References
[1]. ARNOLD E, AL-JARRAH O Y, DIANATI M, et al.A survey on 3D object detection methods for autonomous driving applications [J].IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10): 3782-3795.
[2]. ZHANG Y P, LU J W, ZHOU J.Objects are different: flexible monocular 3D object detection [C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, June 20-25, 2021: 3288-3297.
[3]. ZHENG Z, YUE X, KEUTZER K, et al.Scene-aware learning network for radar object detection [C]//Proceedings of the 2021 International Conference on Multimedia Retrieval, Taipei, China, August 21-24, 2021: 573-579.
[4]. YANG H, WANG W, CHEN M, et al.PVT-SSD: single-stage 3D object detector with point-voxel transformer [C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, June 18-22, 2023: 13476-13487.
[5]. YIN T W, ZHOU X Y, KRÄHENBÜHL P.Multimodal virtual point 3D detection [J].Advances in Neural Information Processing Systems, 2021, 34: 16494-16507.
[6]. KIM Y, SHIN J, KIM S, et al.CRN: camera radar net for accurate, robust, efficient 3D perception [C]//2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, October 1-6, 2023: 17569-17580.
[7]. NABATI R, QI H R.CenterFusion: center-based radar and camera fusion for 3D object detection [C]//2021 IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, USA, January 3-8, 2021: 1526-1535.
[8]. NOBIS F, GEISSLINGER M, WEBER M, et al.A deep learning-based radar and camera sensor fusion architecture for object detection [C]//2019 Sensor Data Fusion: Trends, Solutions, Applications, Bonn, Germany, October 15-17, 2019: 1-7.
[9]. ZHANG H, ZU K, LU J, et al.EPSANet: an efficient pyramid squeeze attention block on convolutional neural network [C]//Proceedings of the Asian Conference on Computer Vision, Macao, China, December 4-8, 2022: 1161-1177.
[10]. GEIGER A, LENZ P, URTASUN R.Are we ready for autonomous driving?The KITTI vision benchmark suite [C]//2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, June 16-21, 2012: 3354-3361.
[11]. SUN P, KRETZSCHMAR H, DOTIWALLA X, et al.Scalability in perception for autonomous driving: waymo open dataset [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, June 13-19, 2020: 2443–2451.