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Abstract. To address the challenge of missed detections of long-distance targets in
autonomous driving, this study proposes an enhanced 3D object detection model based on
the CenterFusion framework, integrating camera and millimeter-wave radar data. An early
fusion strategy is employed to project radar data onto the image plane, combining it with
image data to form a multi-channel input, thereby enhancing the model’s robustness against
interference. Additionally, an attention mechanism is incorporated post-feature fusion to
prioritize the extraction of critical information from the fused feature map, significantly
improving detection accuracy. The loss function is optimized to mitigate the imbalance
between positive and negative samples. Comparative and ablation experiments conducted on
the nuScenes dataset demonstrate that the proposed model achieves a 1.5% improvement in
average detection accuracy and a 2.1% increase in nuScenes Detection Score (NDS)
compared to the baseline CenterFusion model, effectively enhancing long-distance target
detection capabilities.
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1.  Introduction

Three-dimensional (3D) object detection is a cornerstone of autonomous driving systems, enabling
vehicles to perceive and interpret their surroundings accurately. Unlike traditional two-dimensional
(2D) detection, 3D object detection provides spatial information, including depth, orientation, and
scale, which are critical for safe navigation in complex environments. However, single-sensor
modalities, such as cameras or radar, often face limitations. Camera-based systems excel in
capturing rich semantic and textural information but struggle with depth estimation and perform
poorly under adverse lighting or weather conditions [1]. Conversely, radar systems provide reliable
depth and velocity data but suffer from sparse point clouds and limited semantic detail [2]. These
limitations highlight the need for multimodal fusion to leverage complementary sensor data for
robust 3D object detection.

Recent advancements in 3D object detection have focused on both single-sensor and multi-sensor
approaches. Single-sensor methods, such as those utilizing radar point clouds, often employ deep
learning architectures like PointNet or Transformer-based models to process sparse data [3].
However, these methods are sensitive to occlusions and signal interference, leading to incomplete



Proceedings	of	the	7th	International	Conference	on	Computing	and	Data	Science
DOI:	10.54254/2755-2721/2025.24680

23

detections. Multi-sensor fusion approaches, which combine data from cameras, radar, and LiDAR,
have shown promise in improving detection robustness [4]. For instance, fusion models like the
Multi-View Projection (MVP) model [5] and Camera-Radar Network (CRN) [6] integrate 2D image
features with 3D point clouds to enhance detection performance. Despite these advances, challenges
remain, including quantization errors during point cloud voxelization, loss of spatial information in
data transformations, and inaccuracies in depth estimation for distant objects [7].

To address these issues, particularly the missed detection of long-distance targets, this study
proposes an improved 3D object detection model based on the CenterFusion framework [8]. The
proposed model introduces an early fusion strategy to align radar and camera data, an attention
mechanism to enhance feature extraction, and an optimized loss function to balance sample
distributions. Experiments on the nuScenes dataset validate the model’s superior performance in
detecting distant objects compared to existing methods.

2.  Preliminary knowledge

2.1.  Multimodal fusion in 3D object detection

Multimodal fusion integrates data from multiple sensors to enhance the robustness and accuracy of
3D object detection. Common sensors include cameras, which provide high-resolution RGB images,
and millimeter-wave radar, which generates sparse point clouds with depth and velocity information.
Fusion strategies are typically categorized into early, late, and deep fusion. Early fusion combines
raw or pre-processed sensor data at the input stage, enabling the model to learn joint representations.
Late fusion processes each modality independently before combining high-level features. Deep
fusion integrates features at multiple network layers, balancing computational complexity and
feature interaction [1].

The CenterFusion model, a representative multimodal fusion framework, combines camera
images and radar point clouds for 3D object detection [8] as show in Figure 1. It consists of three
main components: an image-based detection branch, a radar-based voxel network branch, and a
secondary regression feature fusion network. The image branch employs an improved Deep Layer
Aggregation (DLA) network within the CenterNet architecture to extract 2D features. The radar
branch processes point clouds into voxel grids, capturing local features. The fusion network aligns
and integrates these features to produce 3D bounding boxes. However, CenterFusion struggles with
detecting distant objects due to sparse radar data and limited feature interaction at long ranges.
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Figure 1: CenterFusion network architecture. Preliminary 3D boxes are first obtained using the
image features extracted by the backbone. The frustum association module uses the preliminary

boxes to associate radar detections to objects and generate radar feature maps. The image and radar
features maps are then concatenated and used to refine the preliminary detections by recalculating

depth and rotation as well as estimating objects’ velocity and attributes

2.2.  Attention mechanisms

Attention mechanisms enhance neural networks by focusing on relevant features while suppressing
noise. In 3D object detection, attention mechanisms, such as those based on Transformer
architectures, capture global contextual information and improve feature representation [4]. For
instance, the Pyramid Squeeze Attention (PSA) block, proposed by Zhang et al. [9], efficiently
aggregates multi-scale features, making it suitable for enhancing fusion networks. Integrating
attention mechanisms into multimodal fusion models can prioritize critical spatial and semantic
information, addressing challenges like sparse data and occlusion. The improved network
architecture of the CenterFusion model as show in Figure 2.

Figure 2: Improved network architecture of the CenterFusion Model

2.3.  Evaluation metrics

The nuScenes dataset, a widely used benchmark for autonomous driving, evaluates 3D object
detection using the nuScenes Detection Score (NDS) [10]. NDS combines the mean Average
Precision (mAP) with five True Positive (TP) metrics: mean Average Translation Error (mATE),
mean Average Scale Error (mASE), mean Average Orientation Error (mAOE), mean Average
Velocity Error (mAVE), and mean Average Attribute Error (mAAE). The NDS is computed as:
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This metric provides a comprehensive assessment of detection accuracy, localization, and
attribute estimation, making it ideal for evaluating the proposed model’s performance.

3.  Experiments

3.1.  Experimental setup

To evaluate the performance of the proposed improved 3D object detection model based on
CenterFusion, experiments were conducted using the nuScenes dataset, a comprehensive
multimodal benchmark for autonomous driving [11]. The nuScenes dataset includes data from
cameras, millimeter-wave radar, and LiDAR, capturing diverse urban driving scenarios. The dataset
was split into training, validation, and test sets as per the official protocol, with the validation set
used for performance evaluation.

The proposed model integrates an early fusion strategy, an attention mechanism, and an
optimized loss function. The early fusion module maps radar point clouds onto the image plane,
creating a multi-channel input alongside RGB images. The attention mechanism, inspired by the
Pyramid Squeeze Attention (PSA) block [9], enhances feature extraction post-fusion. The loss
function was adjusted to address the imbalance between positive and negative samples, improving
detection stability. The baseline CenterFusion model [8] and other state-of-the-art methods were
used for comparison.

Training was performed on a high-performance computing platform with NVIDIA GPUs, using
the Adam optimizer and a learning rate of 1e-4. The model was trained for 50 epochs, with batch
size and other hyperparameters tuned based on validation performance. Evaluation metrics included
the nuScenes Detection Score (NDS) and mean Average Precision (mAP), as defined in Section 2.3.
NDS combines mAP with five True Positive (TP) metrics: mean Average Translation Error (mATE),
mean Average Scale Error (mASE), mean Average Orientation Error (mAOE), mean Average
Velocity Error (mAVE), and mean Average Attribute Error (mAAE).

3.2.  Comparative experiments

Comparative experiments were conducted to assess the proposed model against the baseline
CenterFusion model and other multimodal fusion approaches, such as the Multi-View Projection
(MVP) model [5] and Camera-Radar Network (CRN) [6]. The results, evaluated on the nuScenes
validation set, are summarized as follows:

· Average Detection Accuracy: The proposed model achieved a 1.5% higher mAP compared to
the baseline CenterFusion model, demonstrating improved detection precision across object
categories.

· NuScenes Detection Score (NDS): The proposed model attained an NDS of 2.1% higher than
CenterFusion, reflecting enhanced performance in localization, scale, orientation, velocity, and
attribute estimation.

· Long-Distance Target Detection: Qualitative results, as shown in Figure 8 of the original
paper, highlight the proposed model’s superior ability to detect distant objects. For instance, in
visualization results (Figure 8(a2) and 8(b2)), CenterFusion failed to detect a white car at a long
distance and two white cars in a complex road scenario, respectively. In contrast, the proposed
model accurately detected these targets, validating its robustness for long-range detection.
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Table 1: Comparison of detection accuracy for different object categories by the algorithm

Models
Detection Accuracy for Different Object Categories

Car Truck Bus Trailer Const. Pedest. Motor. Bicycle Traff. Barrier

CenterNet 0.461 0.237 0.327 0.135 0.035 0.364 0.249 0.233 0.551 0.452
CenterFusion 0.525 0.265 0.368 0.148 0.054 0.388 0.303 0.227 0.563 0.471

Ours 0.534 0.269 0.371 0.156 0.065 0.421 0.345 0.242 0.576 0.479

3.3.  Ablation studies

Ablation experiments were conducted to evaluate the contributions of each component in the
proposed model. The following configurations were tested:

· Baseline CenterFusion: The original CenterFusion model without modifications.
· Early Fusion Only: Adding the early fusion strategy to map radar data onto the image plane.
· Early Fusion + Attention Mechanism: Incorporating the attention mechanism post-feature

fusion.
· Full Model: Combining early fusion, attention mechanism, and optimized loss function.

(a1) Original Image 1 (a2) CenterFusion Model Detection 1 (a3) Improved Model Detection 1

(b1) Original Image 2 (b2) CenterFusion Model Detection 2 (b3) Improved Model Detection 2
Figure 3: Detection result figure

Table 2: Ablation experiments under different improvement schemes

Improvement
Schemes

Early
Fusion

LEPS
A

Loss
Function

NDS
↑

mAP
↑

mATE
↓

mASE
↓

mAOE
↓

mAVE
↓

mAAE
↓

1 × × × 0.452 0.331 0.649 0.263 0.534 0.543 0.143
2 √ × × 0.459 0.338 0.633 0.261 0.528 0.531 0.135
3 √ × √ 0.463 0.339 0.617 0.258 0.527 0.529 0.133
4 √ √ × 0.470 0.345 0.609 0.251 0.524 0.505 0.131
5 √ √ √ 0.473 0.346 0.593 0.249 0.523 0.498 0.128
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Results demonstrated that each component incrementally improved performance. The early
fusion strategy enhanced robustness against sparse radar data, the attention mechanism improved
feature prioritization, and the optimized loss function mitigated sample imbalance. The full model
achieved the highest mAP and NDS, confirming the synergistic effect of the proposed modifications.

4.  Conclusion

This study proposes an enhanced 3D object detection model based on the CenterFusion framework,
addressing the challenge of missed detections of long-distance targets in autonomous driving. By
introducing an early fusion strategy, the model effectively integrates camera and radar data at the
input stage, enhancing robustness against interference. The incorporation of an attention mechanism,
inspired by advanced feature aggregation techniques, prioritizes critical information in the fused
feature map, improving detection accuracy. Additionally, an optimized loss function mitigates the
imbalance between positive and negative samples, further stabilizing training.

Experimental results on the nuScenes dataset demonstrate the proposed model’s superiority over
the baseline CenterFusion model and other state-of-the-art methods. The model achieves a 1.5%
improvement in mean Average Precision (mAP) and a 2.1% increase in nuScenes Detection Score
(NDS), with significant gains in detecting distant objects. Ablation studies confirm the effectiveness
of each component, highlighting the importance of early fusion, attention mechanisms, and loss
function optimization.

Future work will focus on addressing remaining limitations, such as sensitivity to extreme
sparsity in radar data and computational efficiency for real-time applications. Additionally,
integrating LiDAR data and exploring advanced Transformer-based architectures could further
enhance detection performance in complex driving scenarios.
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