References
[1]. Wellington, E.M., Boxall, A.B., Cross, P., Feil, E.J., et al. (2013). The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. The Lancet Infectious Diseases, 13(2), 155–165.
[2]. Larsson, D.G.J., & Flach, C.F. (2022). Antibiotic resistance in the environment. Nature Reviews Microbiology, 20(5), 257–269.
[3]. Kümmerer, K. (2009). Antibiotics in the aquatic environment – a review – Part I. Chemosphere, 75(4), 417–434.
[4]. Larsson, D.G.J., de Pedro, C., & Paxeus, N. (2007). Effluent from drug manufactures contains extremely high levels of pharmaceuticals. Journal of Hazardous Materials, 148(3), 751–755.
[5]. Fick, J., Söderström, H., Lindberg, R.H., Phan, C., et al. (2009). Contamination of surface, ground, and drinking water from pharmaceutical production. Environmental Toxicology and Chemistry, 28(12), 2522–2527.
[6]. Sarmah, A.K., Meyer, M.T., & Boxall, A.B. (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65(5), 725–759.
[7]. Boxall, A.B., Johnson, P., Smith, E., Sinclair, C.J., et al. (2006). Uptake of veterinary medicines from soils into plants. Journal of Agricultural and Food Chemistry, 54(6), 2288–2297.
[8]. Berendonk, T.U., Manaia, C.M., Merlin, C., Collignon, P., et al. (2015). Tackling antibiotic resistance: The environmental framework. Nature Reviews Microbiology, 13(5), 310–317.
[9]. Zhang, A.N., Gaston, J.M., Dai, C.L., Zhao, S., Poyet, M., Groussin, M., & Zhang, T. (2021). An omics-based framework for assessing the health risk of antimicrobial resistance genes. Nature Communications, 12(1), 4765.
[10]. Zhu, Y.-G., Johnson, T.A., Su, J.-Q., Qiao, M., Guo, G.-X., Stedtfeld, R.D., ... & Tiedje, J.M. (2013). Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proceedings of the National Academy of Sciences, 110(9), 3435–3440.
[11]. Seiler, C., & Berendonk, T.U. (2012). Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Frontiers in Microbiology, 3, 399.
[12]. Wang, Z., Chen, M., & Zhang, L. (2021). Interactions between microplastics and antibiotic resistance genes and their effects on the aquatic environment. Science of the Total Environment, 797, 148924.
[13]. Rizzo, L., Manaia, C., Merlin, C., Schwartz, T., et al. (2013). Urban effluvium treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Science of the Total Environment, 447, 345–360.
[14]. Luo, Y., Guo, W., Ngo, H.H., Nghiem, L.D., et al. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of the Total Environment, 473, 619–641.
[15]. Citorik, R.J., Mimee, M., & Lu, T.K. (2014). Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nature Biotechnology, 32(11), 1141–1145.
[16]. Singer, A.C., Shaw, H., Rhodes, V., & Hart, A. (2016). Review of antimicrobial resistance in the environment and its relevance to environmental regulators. Environment International, 94, 736–757.
[17]. Le Page, G., Gunnarsson, L., Snape, J., & Tyler, C.R. (2017). Integrating human and environmental health in antibiotic risk assessment: A critical analysis of protection goals, species sensitivity, and antimicrobial resistance. Environment International, 109, 155–169.
[18]. Michael, I., Rizzo, L., McArdell, C.S., et al. (2019). Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Science of the Total Environment, 747, 141–158.
[19]. Hughes, S.R., Kay, P., & Brown, L.E. (2013). Global synthesis and critical evaluation of pharmaceutical data sets collected from river systems. Environmental Science & Technology, 47(2), 661–677.
[20]. Larsson, D.G.J., Andremont, A., Bengtsson-Palme, J., Brandt, K.K., et al. (2018). Critical knowledge gaps and research needs related to the environmental dimensions of antibiotic resistance. Environment International, 117, 132–138.
[21]. Eggen, R.I., Hollender, J., Joss, A., Schärer, M., & Stamm, C. (2014). Reducing the discharge of micropollutants in the aquatic environment: The benefits of upgrading wastewater treatment plants. Environmental Science & Technology, 48(14), 7683–7689.
[22]. Manaia, C.M., Rocha, J., Scaccia, N., Marano, R., et al. (2018). Antibiotic resistance in wastewater treatment plants: Tackling the black box. Environment International, 115, 312–324.
[23]. Batt, A.L., Bruce, I.B., & Aga, D.S. (2006). Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges. Environmental Pollution, 142(2), 295–302.
[24]. Michael, I., Rizzo, L., McArdell, C.S., Manaia, C.M., et al. (2013). Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Research, 47(3), 957–995.
[25]. Rico, A., Phu, T.M., Satapornvanit, K., Minh, T.H., et al. (2013). Use of veterinary medicines, feed additives and probiotics in four major internationally traded aquaculture species farmed in Asia. Aquaculture, 412, 231–243.
[26]. Andersson, D.I., & Hughes, D. (2014). Microbiological effects of sublethal levels of antibiotics. Nature Reviews Microbiology, 12(7), 465–478.
[27]. Wilkinson, J.L., Boxall, A.B.A., Kolpin, D.W., Leung, K.M.Y., et al. (2022). Pharmaceutical pollution of the world’s rivers. Proceedings of the National Academy of Sciences, 119(8), e2113947119.
[28]. Pruden, A., Arabi, M., & Storteboom, H.N. (2012). Correlation between upstream human activities and riverine antibiotic resistance genes. Environmental Science & Technology, 46(21), 11541–11549.
[29]. Cycoń, M., Mrozik, A., & Piotrowska-Seget, Z. (2019). Antibiotics in the soil environment—Degradation and their impact on microbial activity and diversity. Frontiers in Microbiology, 10, 338. https: //doi.org/10.3389/fmicb.2019.00338
[30]. Pan, M., & Chu, L.M. (2017). Fate of antibiotics in soil and their uptake by edible crops. Science of the Total Environment, 599, 500–512.
[31]. Thiele-Bruhn, S. (2003). Pharmaceutical antibiotic compounds in soils – a review. Journal of Plant Nutrition and Soil Science, 166(2), 145–167.
[32]. Chefetz, B., Mualem, T., & Ben-Ari, J. (2008). Sorption and mobility of pharmaceutical compounds in soil irrigated with reclaimed wastewater. Chemosphere, 73(8), 1335–1343.
[33]. Chen, H., Liu, S., Xu, X.R., Zhou, G.J., Liu, S.S., & Ying, G.G. (2013). Antibiotics in typical marine aquaculture farms surrounding Hailing Island, South China: Occurrence, bioaccumulation and human dietary exposure. Marine Pollution Bulletin, 67(1–2), 137–145.
[34]. Wang, L., Oda, Y., Grewal, S., Morrison, M., & Michel, F.C. (2015). Distribution of prevalent antibiotic resistance genes in composts of different origins and during composting. Journal of Environmental Monitoring, 14(7), 1845–1852.
[35]. Baker-Austin, C., Wright, M.S., Stepanauskas, R., & McArthur, J.V. (2006). Co-selection of antibiotic and metal resistance. Trends in Microbiology, 14(4), 176–182.
[36]. Fu, Q., Ma, L., Ni, J., Zhang, X., et al. (2017). Bioaccumulation and trophic transfer of antibiotics in the aquatic food web in a large subtropical river. Environmental Science & Technology, 51(8), 4693–4700.
[37]. Pereira, A.M., Silva, L.J., Meisel, L.M., Lino, C.M., & Pena, A. (2015). Environmental impact of pharmaceuticals from Portuguese wastewaters: geographical and seasonal occurrence, removal and risk assessment. Environmental Research, 136, 108–119.
[38]. Brooks, B.W., Chambliss, C.K., Stanley, J.K., Ramirez, A., et al. (2005). Determination of select antidepressants in fish from an effluent-dominated stream. Environmental Toxicology and Chemistry, 24(2), 464–469.
[39]. Gaw, S., Thomas, K.V., & Hutchinson, T.H. (2014). Sources, impacts and trends of pharmaceuticals in the marine and coastal environment. Philosophical Transactions of the Royal Society B, 369(1656), 20130572.
[40]. Done, H.Y., & Halden, R.U. (2015). Reconnaissance of 47 antibiotics and associated microbial risks in seafood sold in the United States. Journal of Hazardous Materials, 282, 10–17.
[41]. Chopra, I., & Roberts, M. (2001). Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiology and Molecular Biology Reviews, 65(2), 232–260.
[42]. Wu, X., Conkle, J.L., Ernst, F., & Gan, J. (2013). Comparative uptake and translocation of pharmaceutical and personal care products (PPCPs) by common vegetables. Environment International, 60, 15–22.
[43]. Goldstein, M., Shenker, M., & Chefetz, B. (2014). Insights into the uptake processes of wastewater-borne pharmaceuticals by vegetables. Environmental Science & Technology, 48(10), 5593–5600.
[44]. Sharma, R., Ganguly, S., Kumar, A., Sharma, A., et al. (2023). Profiling of antibiotic residues in soil and vegetables irrigated using pharmaceutical-contaminated water in the Delhi stretch of the Yamuna River, India. Water, 15(23), 4197.
[45]. Guenther, S., Grobbel, M., Lübke-Becker, A., Goedecke, A., et al. (2012). Efficacy of airborne transmission of antibiotic-resistant bacteria from livestock farms: A review of literature data. Applied and Environmental Microbiology, 78(9), 3132–3137.
[46]. Kümmerer, K., & Henninger, A. (2003). Promoting resistance by the emission of antibiotics from hospitals and households into effluents. Clinical Microbiology and Infection, 9(12), 1203–1214.
[47]. Hoelzer, K., Bielke, L., Blake, D.P., Cox, E., et al. (2017). Vaccines as alternatives to antibiotics for food-producing animals. Part 1: Challenges and needs. Veterinary Research, 49(1), 64.
[48]. Heuer, H., Schmitt, H., & Smalla, K. (2011). Antibiotic resistance gene spread due to manure application on agricultural fields. Current Opinion in Microbiology, 14(3), 236–243.
[49]. Pal, C., Asiani, K., Arya, S., Rensing, C., et al. (2017). Metal resistance and its association with antibiotic resistance. Advances in Microbial Physiology, 70, 261–313.
[50]. Masó, M., Huerta, B., Blasco, J., & Ralda, J.R. (2020). Microplastics as carriers of antibiotic resistance genes and pathogens in the marine environment. Environmental Pollution, 264, 114214.
[51]. Carey, D.E., & McNamara, P.J. (2015). The impact of triclosan on the spread of antibiotic resistance in the environment. Frontiers in Microbiology, 5, 780.
[52]. Eguchi, K., Nagao, T., Yoneyama, Y., & Hirata, T. (2004). Effects of low levels of antibiotics on algal growth and phytoplankton community structure. Environmental Toxicology, 19(4), 453–461.
[53]. Yang, L.H., Ying, G.G., Su, H.C., Stauber, R., Adams, M., & Binet, M. (2008). Growth inhibition of Lemna minor by fluoroquinolone antibacterials. Chemosphere, 73(3), 377–382.
[54]. Chang, F., Yi, M., Li, H., Wang, J., et al. (2022). Antibiotic toxicity isolated and as binary mixture to freshwater algae Raphidocelis subcapitata: Growth inhibition, prediction model, and environmental risk assessment. Toxics, 10(12), 739.
[55]. Santos, L.H., Araújo, A.N., Fachini, A., Pena, A., et al. (2010). Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. Journal of Hazardous Materials, 175(1–3), 45–95.
[56]. Liu, S.S., Zhao, H., & Liu, Y.S. (2018). Evaluating the toxicity of antibiotics to algae: A review. Ecotoxicology and Environmental Safety, 163, 45–60.
[57]. Oaks, J.L., Gilbert, M., Virani, M.Z., Watson, R.T., et al. (2004). Diclofenac residues as the cause of vulture population decline in Pakistan. Nature, 427(6975), 630–633.
[58]. Kotzerke, A., Sharma, S., Schauss, K., Heuer, H., Thiele-Bruhn, S., et al. (2011). Alterations in soil microbial activity and N-cycle processes due to sulfadiazine loads in pig manure. Environmental Pollution, 159(7), 1981–1989.
[59]. Guerin, E., Cambau, E., Barthélémy, M., Ploy, M.C., et al. (2009). The SOS response controls integron recombination. Science, 324(5930), 1034.
[60]. Kurenbach, B., Marjoshi, D., Amábile-Cuevas, C.F., Ferguson, G.C., et al. (2015). Sublethal exposure to commercial formulations of the herbicides dicamba, 2, 4-D, and glyphosate cause changes in antibiotic susceptibility in Escherichia coli and Salmonella enterica serovar Typhimurium. mBio, 6(2), e00009-15.
[61]. Beaber, J.W., Hochhut, B., & Waldor, M.K. (2004). SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature, 427(6969), 72–74.
[62]. Nesme, J., Simonet, P., & Vogel, T.M. (2014). Diversity of antibiotic resistance genes in bacterial communities. FEMS Microbiology Reviews, 38(4), 756–778.
[63]. Leonard, A.F., Singer, A.C., Ukoumunne, O.C., Gaze, W.H., & Garside, R. (2018). Is it safe to swim? A systematic review and meta-analysis of the risk of acquiring infections from recreational water exposure. International Journal of Epidemiology, 47(2), 572–586.
[64]. Casey, J.A., Curriero, F.C., Cosgrove, S.E., Nachman, K.E., & Schwartz, B.S. (2013). High-density livestock farms, crop field application of manure, and risk of community-associated MRSA infection in Pennsylvania. JAMA Internal Medicine, 173(21), 1980–1990.
[65]. Walsh, T.R., Weeks, J., Livermore, D.M., & Toleman, M.A. (2011). Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. The Lancet Infectious Diseases, 11(5), 355–362.
[66]. Murray, C.J., Ikuta, K.S., Sharara, F., Swetschinski, L., et al. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 399(10325), 629–655.
[67]. Hollender, J., Zimmermann, S.G., Koepke, S., Krauss, M., et al. (2009). Elimination of organic micropollutants in a municipal wastewater treatment plant upgraded with full-scale post-ozonation followed by sand filtration. Environmental Science & Technology, 43(20), 7862–7869.
[68]. Wu, N., Qiao, M., Zhang, B., Cheng, W.D., & Zhu, Y.G. (2018). Abundance and diversity of sulfonamide resistance genes in activated sludge of WWTPs. Chemosphere, 90(4), 134–139.
[69]. Zhang, Y., Zhuang, Y., Geng, J., Ren, H., & Ding, L. (2018). Reduction of antibiotic resistance genes in municipal wastewater effluent by advanced oxidation processes. Science of the Total Environment, 613–614, 1296–1302.
[70]. Li, B., Qiu, Y., Shi, H., Yin, H., et al. (2019). Application of advanced oxidation processes for removal of antibiotics from water: A review. Chemical Engineering Journal, 376, 120895.
[71]. Wu, D., Lei, Y., Sun, X., Zhao, Y., et al. (2012). Chlorination of selected antibiotics: chloroform formation and amine intermediate oxidation. Environmental Science & Technology, 46(14), 7717–7725.
[72]. Wang, J., Wang, S., & Jin, J. (2022). Ozone oxidation as an advanced sludge treatment process: Removal of antibiotic resistance genes and reduction of sludge toxicity. Science of the Total Environment, 806, 151305.
[73]. McKinney, C.W., & Pruden, A. (2012). Ultraviolet disinfection of antibiotic-resistant bacteria and their antibiotic resistance genes in water and wastewater. Environmental Science & Technology, 46(24), 13393–13400.
[74]. Van der Bruggen, B., Lejon, L., & Vandecasteele, C. (2008). Reuse, treatment, and discharge of the concentrate of pressure-driven membrane processes. Environmental Science & Technology, 37(17), 3733–3738.
[75]. Fang, L., Chen, C., Li, S., Ye, P., Shi, Y., Sharma, G., Sarkar, B., Shaheen, S. M., Lee, S. S., Xiao, R., & Chen, X. (2023). A comprehensive and global evaluation of residual antibiotics in agricultural soils: Accumulation, potential ecological risks, and attenuation strategies. Ecotoxicology and Environmental Safety, 262, 115175. https: //doi.org/10.1016/j.ecoenv.2023.115175
[76]. Pollard, A. T., & Morra, M. J. (2018). Fate of tetracycline antibiotics in dairy manure-amended soils. Environmental Reviews, 26(1), 102–112. https: //doi.org/10.1139/er-2017-0041
[77]. Amarakoon, I. D., Sura, S., Zvomuya, F., Cessna, A. J., Larney, F. J., & McAllister, T. A. (2016). Dissipation of antimicrobials in a seasonally frozen soil after beef cattle manure application. Journal of Environmental Quality, 45, 1644–1651. https: //doi.org/10.2134/jeq2016.01.0012.
[78]. Dalkmann, P., Broszat, M., Siebe, C., Willaschek, E., Sakinc, T., Huebner, J., Amelung, W., Grohmann, E., & Siemens, J. (2012). Accumulation of pharmaceuticals, Enterococcus, and resistance genes in soils irrigated with wastewater for zero to 100 years in Central Mexico. PLOS ONE, 7(9), e45397. https: //doi.org/10.1371/journal.pone.0045397
[79]. Fučík, J., Amrichová, A., Brabcová, K., Karpíšková, R., Koláčková, I., Pokludová, L., Poláková, Š., & Mravcová, L. (2024). Fate of fluoroquinolones in field soil environment after incorporation of poultry litter from a farm with enrofloxacin administration via drinking water. Environmental Science and Pollution Research, 31, 20017–20032. https: //doi.org/10.1007/s11356-024-32492-x
[80]. Pan, L., Feng, X., Cao, M., Zhang, S., Huang, Y., Xu, T., Jing, J., & Zhang, H. (2019). Determination and distribution of pesticides and antibiotics in agricultural soils from northern China. RSC Advances, 9, 15686–15693. https: //doi.org/10.1039/C9RA00783K
[81]. Fabregat-Palau, J., Rigol, A., Grathwohl, P., & Vidal, M. (2024). Assessing sorption of fluoroquinolone antibiotics in soils from a Kd compilation based on pure organic and mineral components. Ecotoxicology and Environmental Safety, 280, 116535. https: //doi.org/10.1016/j.ecoenv.2024.116535
[82]. Han, Z., Feng, H., Luan, X., Shen, Y., Ren, L., Deng, L., Larsson, D. G. J., Gillings, M., Zhang, Y., & Yang, M. (2022). Three-year consecutive field application of erythromycin fermentation residue following hydrothermal treatment: Cumulative effect on soil antibiotic resistance genes. Engineering, 15, 78–88. https: //doi.org/10.1016/j.eng.2022.05.011