References
[1]. Das, R., Tiwari, A., Prakash, S., & Kumar, S. (2020). Biointegrated and wirelessly powered implantable brain devices: A review. IEEE Transactions on Biomedical Circuits and Systems, 14(2), 343–358.
[2]. Pimenta, S., Ribeiro, F., & Silva, C. (2024). Flexible neural probes: A review of the current advantages, drawbacks, and future demands. Journal of Zhejiang University–SCIENCE B, 25(7), 571–595.
[3]. Chen, Y., Liu, Y., Zhang, Y., & Wang, H. (2021). How is flexible electronics advancing neuroscience research? Biomaterials, 268, 120559.
[4]. Zhou, N., Liu, X., & Hu, Y. (2020). Recent advances in the construction of flexible sensors for biomedical applications. Biotechnology Journal, 15(12), e2000094.
[5]. Vargo, S., Dyer, A., & Hwang, S. (2023). Smart Dura: A monolithic optoelectrical surface array for neural interfacing with primate cortex. Proceedings of the IEEE/EMBS Conference on Neural Engineering (NER).
[6]. Park, H., Lee, J., & Kim, D. (2022). A miniaturized 256-channel neural recording interface with area-efficient hybrid integration of flexible probes. IEEE Transactions on Biomedical Engineering, 69(1), 334–346.
[7]. Zeng, N., Yang, Y., & Xie, L. (2023). A wireless, mechanically flexible, 25 μm-thick, 65, 536-channel subdural surface recording and stimulation array. IEEE Symposium on VLSI Technology & Circuits (Proceedings).
[8]. Huang, Z., Zhang, Q., & Wang, J. (2022). Actively multiplexed μECoG brain implant system with incremental-ΔΣ ADCs employing bulk-DACs. IEEE Transactions on Biomedical Circuits and Systems, 16(2), 233–246.
[9]. Carlino, G., Min, H., & Kwon, Y. (2023). Highly-digital 0.0018-mm²/channel multiplexed neural frontend with time-based incremental ADC for implantable brain interfaces. IEEE Journal of Solid-State Circuits, 58(4), 1021–1034.
[10]. Ling, W., Wang, X., & Yang, J. (2024). Miniaturized implantable fluorescence probes integrated with metal–organic frameworks for deep brain neurotransmitter detection. ACS Nano, 18(15), 10596–10608.
[11]. Ling, W., Zhang, Q., & Chen, H. (2020). Flexible electronics and materials for synchronized stimulation and monitoring in multi-encephalic regions. Advanced Functional Materials, 30(32), 2002644.
[12]. Ren, X., Li, Y., & Zhao, H. (2025). Flexible tactile sensors with self-assembled cilia based on magnetoelectric composites. ACS Applied Materials & Interfaces, 17(4), 6936–6947.
[13]. Vinoj, P. G., Menon, S., & Das, R. (2019). Brain-controlled adaptive lower limb exoskeleton for rehabilitation of post-stroke paralyzed patients. IEEE Access, 7, 132628–132648.
[14]. Amri, M. M. (2022). Recent trends in the reconfigurable intelligent surfaces (RIS): Active RIS to brain-controlled RIS. In Proc. 2022 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT) (pp. 299–304).
[15]. Agarwal, K., Sharma, R., & Gupta, P. (2017). Wireless power transfer strategies for implantable bioelectronics. IEEE Reviews in Biomedical Engineering, 10, 136–161.