References
[1]. Cheng, Y., & Tang, K. (2024). GPT's idea of stock factors. Quantitative Finance, 24(9), 1301-1326.
[2]. Thimme, J., & Klaus, V. (2025). Understanding Asset Pricing Factors. Available at SSRN.
[3]. Lopez-Lira, A., & Tang, Y. (2023). Can chatgpt forecast stock price movements? return predictability and large language models. arXiv preprint arXiv: 2304.07619.
[4]. LoGrasso, M. F. (2024). Could ChatGPT Have Earned Abnormal Returns?. Available at SSRN 4758402.
[5]. Kargarzadeh, A. (2024). Developing and backtesting a trading strategy using large language models, macroeconomic and technical indicators. Mémoire de master, Imperial College London.
[6]. Li, X., Shen, X., Zeng, Y., Xing, X., & Xu, J. (2024, May). Finreport: Explainable stock earnings forecasting via news factor analyzing model. In Companion Proceedings of the ACM Web Conference 2024 (pp. 319-327).
[7]. Offutt, J., & Xie, Y. (2025). Quantifying legal risk with Large Language Models: A text-based investment signal. Journal of High School Science, 9(3), 486-515.
[8]. Xue, H., Liu, C., Zhang, C., Chen, Y., Zong, A., Wu, Z., ... & Su, J. (2025, July). LLM-Enhanced Feature Engineering for Multi-factor Electricity Price Predictions. In International Conference on Intelligent Computing (pp. 89-100). Singapore: Springer Nature Singapore.
[9]. Cohen, G., Aiche, A., & Eichel, R. (2025). Artificial Intelligence Models for Predicting Stock Returns Using Fundamental, Technical, and Entropy-Based Strategies: A Semantic-Augmented Hybrid Approach. Entropy, 27(6), 550.
[10]. Xiao, Y., Sun, E., Chen, T., Wu, F., Luo, D., & Wang, W. (2025). Trading-R1: Financial Trading with LLM Reasoning via Reinforcement Learning. arXiv preprint arXiv: 2509.11420.
[11]. Koa, K. J., Ma, Y., Ng, R., & Chua, T. S. (2024, May). Learning to generate explainable stock predictions using self-reflective large language models. In Proceedings of the ACM Web Conference 2024 (pp. 4304-4315).