Research Advances on the Impact of Environmental Pollutants on Gut Microbiota
Research Article
Open Access
CC BY

Research Advances on the Impact of Environmental Pollutants on Gut Microbiota

Haibo Wang 1*
1 Tianjin University of Science and Technology
*Corresponding author: 22206106@mail.tust.edu.cn
Published on 28 October 2025
Journal Cover
TNS Vol.147
ISSN (Print): 2753-8826
ISSN (Online): 2753-8818
ISBN (Print): 978-1-80590-489-2
ISBN (Online): 978-1-80590-490-8
Download Cover

Abstract

Environmental pollutants such as microplastics, pesticides, and heavy metals are emerging as critical determinants of gut microbiota composition and function. This review synthesizes current evidence from animal models, human studies, and mechanistic investigations to delineate how these contaminants disrupt gut microecology and compromise host health. Across pollutant classes, common pathogenic features include induction of dysbiosis, characterized by depletion of beneficial commensals and enrichment of pro-inflammatory taxa; impairment of intestinal barrier integrity, facilitating translocation of microbial metabolites into systemic circulation; and activation of innate immune signaling pathways. Notably, all three pollutant categories converge on the LPS/TLR4/NF-κB pathway, driving the release of pro-inflammatory cytokines such as TNF-α and IL-6, thereby promoting chronic inflammation and metabolic dysfunction. While animal studies provide robust mechanistic insights, human evidence remains limited, with few large-scale longitudinal cohorts. Future research should prioritize multi-omics, physiologically relevant models, and microbiota-targeted interventions to clarify causal pathways and mitigate pollutant toxicity.

Keywords:

Gut microbiota, environmental pollutants, microplastics, pesticides, heavy metals

View PDF
Wang,H. (2025). Research Advances on the Impact of Environmental Pollutants on Gut Microbiota. Theoretical and Natural Science,147,1-8.

References

[1]. Claus, S. P., Guillou, H., & Ellero-Simatos, S. (2016) The gut microbiota: a major player in the toxicity of environmental pollutants? NPJ Biofilms Microbiomes, 2: 16003. https: //doi.org/10.1038/npjbiofilms.2016.3

[2]. Yu, H., Zhang, Y., Tan, W., & Zhang, Z. (2022) Microplastics as an Emerging Environmental Pollutant in Agricultural Soils: Effects on Ecosystems and Human Health. Frontiers in Environmental Science, 10. https: //doi.org/10.3389/fenvs.2022.855292

[3]. Xu, M., Niu, H., Wu, L., Xing, M., Mo, Z., Chen, Z., Li, X., & Lou, X. (2024) Impact of Microplastic Exposure on Blood Glucose Levels and Gut Microbiota: Differential Effects under Normal or High-Fat Diet Conditions. Metabolites, 14(9). https: //doi.org/10.3390/metabo14090504

[4]. Jin, Y., Lu, L., Tu, W., Luo, T., & Fu, Z. (2019) Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Science of The Total Environment, 649: 308-317.

[5]. Zhang, X., Wang, H., Peng, S., Kang, J., Xie, Z., Tang, R., Xing, Y., He, Y., Yuan, H., Xie, C., & Liu, Y. (2022) Effect of microplastics on nasal and intestinal microbiota of the high-exposure population. Frontiers in Public Health, 10. https: //doi.org/10.3389/fpubh.2022.1005535

[6]. Kim, C. H. (2021) Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids. Cell Mol Immunol, 18(5): 1161-1171. https: //doi.org/10.1038/s41423-020-00625-0

[7]. Ke, D., Zheng, J., Liu, X., Xu, X., Zhao, L., Gu, Y., Yang, R., Liu, S., Yang, S., Du, J., Chen, B., He, G., & Dong, R. (2023) Occurrence of microplastics and disturbance of gut microbiota: a pilot study of preschool children in Xiamen, China. EBioMedicine, 97: 104828. https: //doi.org/10.1016/j.ebiom.2023.104828

[8]. Cheng, Y., Yang, Y., Bai, L., & Cui, J. (2024) Microplastics: an often-overlooked issue in the transition from chronic inflammation to cancer. J Transl Med, 22(1): 959. https: //doi.org/10.1186/s12967-024-05731-5

[9]. Maione, A., Norcia, M., Sinoca, M., Galdiero, M., Maselli, V., Feola, A., Carotenuto, R., Cuomo, P., Capparelli, R., Guida, M., & Galdiero, E. (2023) Polystyrene Microplastics Exacerbate Candida albicans Infection Ability In Vitro and In Vivo. Int J Mol Sci, 25(1). https: //doi.org/10.3390/ijms25010012

[10]. Mesnage, R., Panzacchi, S., Bourne, E., Mein, C. A., Perry, M. J., Hu, J., Chen, J., Mandrioli, D., Belpoggi, F., & Antoniou, M. N. (2022) Glyphosate and its formulations Roundup Bioflow and RangerPro alter bacterial and fungal community composition in the rat caecum microbiome. Front Microbiol, 13: 888853. https: //doi.org/10.3389/fmicb.2022.888853

[11]. Almasri, H., Liberti, J., Brunet, J. L., Engel, P., & Belzunces, L. P. (2022) Mild chronic exposure to pesticides alters physiological markers of honey bee health without perturbing the core gut microbiota. Sci Rep, 12(1): 4281. https: //doi.org/10.1038/s41598-022-08009-2

[12]. Gois, M. F. B., Fernandez-Pato, A., Huss, A., Gacesa, R., Wijmenga, C., Weersma, R. K., Fu, J., Vermeulen, R. C. H., Zhernakova, A., Lenters, V. C., & Kurilshikov, A. (2023) Impact of occupational pesticide exposure on the human gut microbiome. Front Microbiol, 14: 1223120. https: //doi.org/10.3389/fmicb.2023.1223120

[13]. Zhang, K., Paul, K., Jacobs, J. P., Cockburn, M. G., Bronstein, J. M., Del Rosario, I., & Ritz, B. (2024) Ambient long-term exposure to organophosphorus pesticides and the human gut microbiome: an observational study. Environ Health, 23(1): 41. https: //doi.org/10.1186/s12940-024-01078-y

[14]. Ali, H., Khan, E., & Ilahi, I. (2019) Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. Journal of Chemistry, 2019: 1-14. https: //doi.org/10.1155/2019/6730305

[15]. Sharma, T., Sirpu Natesh, N., Pothuraju, R., Batra, S. K., & Rachagani, S. (2023). Gut microbiota: a non-target victim of pesticide-induced toxicity. Gut Microbes, 15(1), 2187578. https: //doi.org/10.1080/19490976.2023.2187578

[16]. Liang, Y., Zhan, J., Liu, D., Luo, M., Han, J., Liu, X., Liu, C., Cheng, Z., Zhou, Z., & Wang, P. (2019) Organophosphorus pesticide chlorpyrifos intake promotes obesity and insulin resistance through impacting gut and gut microbiota. Microbiome, 7(1): 19. https: //doi.org/10.1186/s40168-019-0635-4

[17]. Liu, W., Li, C., Li, B., Shang, Q., Han, Z., Zhang, Y., Liu, X., Fan, H., Zhang, J., Chen, Y., & Zhang, H. (2022) Lactiplantibacillus plantarum P9 improved gut microbial metabolites and alleviated inflammatory response in pesticide exposure cohorts. iScience, 25(7): 104472. https: //doi.org/10.1016/j.isci.2022.104472

[18]. Lima, C., Falcao, M. A. P., Rosa, J. G. S., Disner, G. R., & Lopes-Ferreira, M. (2022) Pesticides and Their Impairing Effects on Epithelial Barrier Integrity, Dysbiosis, Disruption of the AhR Signaling Pathway and Development of Immune-Mediated Inflammatory Diseases. Int J Mol Sci, 23(20). https: //doi.org/10.3390/ijms232012402

[19]. George, S. E., Devereux, R., James, J., Wan, Y., Diamond, G. L., Bradham, K. D., & Thomas, D. J. (2023) Dietary lead modulates the mouse intestinal microbiome: Subacute exposure to lead acetate and lead contaminated soil. Ecotoxicol Environ Saf, 249: 114430. https: //doi.org/10.1016/j.ecoenv.2022.114430

[20]. Tao, M., Cao, K., Pu, X., Hou, Y., He, L., Liu, W., Ren, Y., & Yang, X. (2024) Cadmium exposure induces changes in gut microbial composition and metabolic function in long-tailed dwarf hamsters, Cricetulus longicaudatus. Ecol Evol, 14(7): e11682. https: //doi.org/10.1002/ece3.11682

[21]. Gao, B., Chi, L., Mahbub, R., Bian, X., Tu, P., Ru, H., & Lu, K. (2017) Multi-Omics Reveals that Lead Exposure Disturbs Gut Microbiome Development, Key Metabolites, and Metabolic Pathways. Chemical Research in Toxicology, 30(4): 996-1005. https: //doi.org/10.1021/acs.chemrestox.6b00401

[22]. Geirnaert, A., Calatayud, M., Grootaert, C., Laukens, D., Devriese, S., Smagghe, G., De Vos, M., Boon, N., & Van de Wiele, T. (2017) Butyrate-producing bacteria supplemented in vitro to Crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. Scientific Reports, 7(1). https: //doi.org/10.1038/s41598-017-11734-8

[23]. Iljazovic, A., Roy, U., Gálvez, E. J. C., Lesker, T. R., Zhao, B., Gronow, A., Amend, L., Will, S. E., Hofmann, J. D., Pils, M. C., Schmidt-Hohagen, K., Neumann-Schaal, M., & Strowig, T. (2021) Perturbation of the gut microbiome by Prevotella spp. enhances host susceptibility to mucosal inflammation. Mucosal Immunology, 14(1): 113-124. https: //doi.org/10.1038/s41385-020-0296-4

[24]. Shao, M., & Zhu, Y. (2020) Long-term metal exposure changes gut microbiota of residents surrounding a mining and smelting area. Sci Rep, 10(1): 4453. https: //doi.org/10.1038/s41598-020-61143-7

[25]. Liu, W., Feng, H., Zheng, S., Xu, S., Massey, I. Y., Zhang, C., Wang, X., & Yang, F. (2021) Pb Toxicity on Gut Physiology and Microbiota. Front Physiol, 12: 574913. https: //doi.org/10.3389/fphys.2021.574913

Cite this article

Wang,H. (2025). Research Advances on the Impact of Environmental Pollutants on Gut Microbiota. Theoretical and Natural Science,147,1-8.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

About volume

Volume title: Proceedings of ICBioMed 2025 Symposium: AI for Healthcare: Advanced Medical Data Analytics and Smart Rehabilitation

ISBN: 978-1-80590-489-2(Print) / 978-1-80590-490-8(Online)
Editor: Alan Wang
Conference date: 17 October 2025
Series: Theoretical and Natural Science
Volume number: Vol.147
ISSN: 2753-8818(Print) / 2753-8826(Online)