References
[1]. Wu, J., Wu, J., Chen, T., Cai, J., and Ren, R. (2024) Protein aggregation and its affecting mechanisms in neurodegenerative diseases. Neurochemistry International, 180, 105880.
[2]. Zheng, Q., and Wang, X. (2025) Alzheimer’s disease: insights into pathology, molecular mechanisms, and therapy. Protein & Cell, 16(2), 83-120.
[3]. Fan, T., Peng, J., Liang, H., Chen, W., Wang, J., and Xu, R. (2025) Potential common pathogenesis of several neurodegenerative diseases. Neural Regeneration Research, 21(3), 972-988.
[4]. Sun, K. T., and Mok, S. -A. (2025) Inducers and modulators of protein aggregation in Alzheimer’s disease - Critical tools for understanding the foundations of aggregate structures. Neurotherapeutics, 22(3), e00512.
[5]. Simon, P. Y. R., and David, R. (2025) Alzheimer’s Disease, β-Amyloid Peptides, and Ubiquitin-Proteasome System: Nutritherapeutic Insights. Neurodegenerative Disease, 25(2), 76-87.
[6]. Eid, S., Lee, S., Verkuyl, C. E., Almanza, D., Hanna, J., Shenouda, S., Belotserkovsky, A., Zhao, W., and Watts, J. C. (2024) The importance of prion research. Biochemistry and Cell Biology, 102(6), 448-471.
[7]. Aivalioti, E., Georgiopoulos, G., Tual-Chalot, S., Bampatsias, D., Delialis, D., Sopova, K., Drakos, S. G., Stellos, K., and Stamatelopoulos, K. (2025) Amyloid-beta metabolism in age-related neurocardiovascular diseases. European Heart Journal, 46(3), 250-272.
[8]. Ding, S., Choi, S. H., and Miller, Y. I. (2025) Amyloid β-Induced Inflammarafts in Alzheimer’s Disease. International Journal of Molecular Sciences, 26(10), 4592.
[9]. Zhang, X., Liu, Y., Rekowski, M. J., and Wang, N. (2025) Lactylation of tau in human Alzheimer’s disease brains. Alzheimer’s & Dementia, 21(2), e14481.
[10]. Kamatham, P. T., Shukla, R., Khatri, D. K., and Vora, L. K. (2024) Pathogenesis, diagnostics, and therapeutics for Alzheimer’s disease: Breaking the memory barrier. Ageing Research Reviews, 101, 102481.
[11]. Mishra, P., Esfahani, E. K., Fernyhough, P., and Albensi, B. C. (2025) Estradiol Prevents Amyloid Beta-Induced Mitochondrial Dysfunction and Neurotoxicity in Alzheimer’s Disease via AMPK-Dependent Suppression of NF-κB Signaling. International Journal of Molecular Sciences, 26(13), 6203.
[12]. Kadamangudi, S., Marcatti, M., Zhang, W. -R., Fracassi, A., Kayed, R., Limon, A., and Taglialatela, G. (2024) Amyloid-β oligomers increase the binding and internalization of tau oligomers in human synapses. Acta Neuropathologica, 149(1), 2.
[13]. Balducci, C., Orsini, F., Cerovic, M. et al. (2025) Tau oligomers impair memory and synaptic plasticity through the cellular prion protein. Acta Neuropathologica Communications, 13(1), 17.
[14]. Tiong, S. Q., Mohgan, R. N., Quek, J. Y., Liew, J. Y. S., Wong, G. Y. S., Thang, Z. Q., Chan, Z. L., Gan, S. Y., and Chan, E. W. L. (2025) Inhibition of the Transforming Growth Factor-β Signaling Pathway Confers Neuroprotective Effects on Beta-Amyloid-Induced Direct Neurotoxicity and Microglia-Mediated Neuroinflammation. Neurology Research International, 8948290.
[15]. Zhang, G., Peng, Q., Guo, X. et al. (2025) Microglia-derived Galectin-9 drives amyloid-β pathology in Alzheimer’s disease. Aging Cell, 24(2), e14396.
[16]. Wang, X., Wang, J., He, Y., Li, H., Yuan, H., Evans, A., Yu, X., He, Y., and Wang, H. (2015) Apolipoprotein E ε4 Modulates Cognitive Profiles, Hippocampal Volume, and Resting-State Functional Connectivity in Alzheimer’s Disease. Journal of Alzheimer’s Disease, 45(3), 781-95.
[17]. M, Y., and Shetty, N. S. (2025) Advances in the Synthetic Approaches to β‑Secretase (BACE-1) Inhibitors in Countering Alzheimer’s: A Comprehensive Review. ACS Omega, 10(32), 35367-35433.
[18]. Monteiro, K. L. C., Dos Santos Alcântara, M. G., Freire, N. M. L., Brandão, E. M., do Nascimento, V. L., Dos Santos Viana, L. M., de Aquino, T. M., and da Silva-Júnior, E. F. (2023) BACE-1 Inhibitors Targeting Alzheimer’s Disease. Current Alzheimer Research, 20(3), 131-148.
[19]. Melis, V., Magbagbeolu, M., Rickard, J. E. et al. (2015) Effects of oxidized and reduced forms of methylthioninium in two transgenic mouse tauopathy models. Behav Pharmacol. 2015 Jun; 26(4): 353-68.
[20]. Wischik CM, Harrington CR, Storey JM. Tau-aggregation inhibitor therapy for Alzheimer's disease. Behavioural Pharmacology, 88(4), 529-39.
[21]. Duggal, A., Mahindru, D., Baghel, K., Mehrotra, S., and Prajapati, V. K. (2025) Tau protein aggregation: A therapeutic target for neurodegenerative diseases. Advances in Protein Chemistry and Structural Biology, 146, 77-136.
[22]. Jucker, M., and Walker, L. C. (2023) Alzheimer’s disease: From immunotherapy to immunoprevention. Cell, 186(20), 4260-4270.
[23]. Guo, X., Yan, L., Zhang, D., and Zhao, Y. (2024) Passive immunotherapy for Alzheimer’s disease. Ageing Research Reviews, 94, 102192.
[24]. Hampel, H., Elhage, A., Cho, M., Apostolova, L. G., Nicoll, J. A. R., and Atri, A. (2023) Amyloid-related imaging abnormalities (ARIA): radiological, biological and clinical characteristics. Brain, 146(11), 4414-4424.
[25]. Zhang, Z., Yang, X., Song, Y. Q., and Tu, J. (2021) Autophagy in Alzheimer's disease pathogenesis: Therapeutic potential and future perspectives. Ageing Research Reviews, 72, 101464.
[26]. Qin, Q., Teng, Z., Liu, C., Li, Q., Yin, Y., and Tang, Y. (2021) TREM2, microglia, and Alzheimer’s disease. Mechanisms of Ageing and Development, 195, 111438.
[27]. Zhao, X., Hu, Q., Wang, X. et al. (2024) Dual-target inhibitors based on acetylcholinesterase: Novel agents for Alzheimer's disease. European Journal of Medicinal Chemistry, 279, 116810.
[28]. Vemula, P., Schoch, K. M., and Miller, T. M. (2023) Evaluating the efficacy of purchased antisense oligonucleotides to reduce mouse and human tau in vivo. Frontiers in Molecular Neuroscience, 16, 1320182.
[29]. Cao, Z., Kong, F., Ding, J., Chen, C., He, F., and Deng, W. (2024) Promoting Alzheimer’s disease research and therapy with stem cell technology. Stem Cell Research & Therapy, 15(1), 136.
[30]. Wang, J., Jin, C., Zhou, J., Zhou, R., Tian, M., Lee, H. J., and Zhang, H. (2022) PET molecular imaging for pathophysiological visualization in Alzheimer’s disease. European Journal of Nuclear Medicine and Molecular Imaging, 50(3), 765-783.