References
[1]. Wang, H., et al., Scientific discovery in the age of artificial intelligence. Nature, 2023. 620(7972): p. 47–60.
[2]. Babu, M. and M. Snyder, Multi-Omics Profiling for Health. Mol Cell Proteomics, 2023. 22(6): p. 100561.
[3]. Fatima, I., et al., Breakthroughs in AI and multi-omics for cancer drug discovery: A review. Eur J Med Chem, 2024. 280: p. 116925.
[4]. Prelaj, A., et al., Artificial intelligence for predictive biomarker discovery in immuno-oncology: a systematic review. Ann Oncol, 2024. 35(1): p. 29–65.
[5]. Zhang, J., et al., Recent advancements in artificial intelligence for breast cancer: Image augmentation, segmentation, diagnosis, and prognosis approaches. Semin Cancer Biol, 2023. 96: p. 11–25.
[6]. Xu, Z., et al., Precision medicine in colorectal cancer: Leveraging multi-omics, spatial omics, and artificial intelligence. Clin Chim Acta, 2024. 559: p. 119686.
[7]. Biswas, N. and S. Chakrabarti, Artificial Intelligence (AI)-Based Systems Biology Approaches in Multi-Omics Data Analysis of Cancer. Front Oncol, 2020. 10: p. 588221.
[8]. Li, L., et al., Multi-omics based artificial intelligence for cancer research. Adv Cancer Res, 2024. 163: p. 303–356.
[9]. Hatamikia, S., et al., Ovarian cancer beyond imaging: integration of AI and multiomics biomarkers. Eur Radiol Exp, 2023. 7(1): p. 50.
[10]. Zhang, Y., et al., Research and application of omics and artificial intelligence in cancer. Phys Med Biol, 2024. 69(21).
[11]. Poole, D.a.M., Alan, Artificial Intelligence: Foundations of Computational Agents. 2023.
[12]. Norvig, S.J.R.a.P., Artificial Intelligence: A Modern Approach (4th Edition). 2020: Pearson.
[13]. Xu, H., et al., A whole-slide foundation model for digital pathology from real-world data. Nature, 2024. 630(8015): p. 181–188.
[14]. Dugourd, A., et al., Causal integration of multi-omics data with prior knowledge to generate mechanistic hypotheses. Mol Syst Biol, 2021. 17(1): p. e9730.
[15]. Choudhary, A., A Comparative Review of Machine Learning Algorithms: Current State, Challenges and Future Perspectives. 2024 IEEE 2nd International Conference on Innovations in High Speed Communication and Signal Processing (IHCSP), 2024: p. 1–8.
[16]. Raj, A., R.C. Petreaca, and G. Mirzaei, Multi-Omics Integration for Liver Cancer Using Regression Analysis. Curr Issues Mol Biol, 2024. 46(4): p. 3551–3562.
[17]. Braytee, A., et al., Identification of cancer risk groups through multi-omics integration using autoencoder and tensor analysis. Sci Rep, 2024. 14(1): p. 11263.
[18]. Oh, S., et al., Identification of signature gene set as highly accurate determination of metabolic dysfunction-associated steatotic liver disease progression. Clin Mol Hepatol, 2024. 30(2): p. 247–262.
[19]. Lin, X., et al., MultiSC: a deep learning pipeline for analyzing multiomics single-cell data. Brief Bioinform, 2024. 25(6).
[20]. Li, J., et al., SinCHet: a MATLAB toolbox for single cell heterogeneity analysis in cancer. Bioinformatics, 2017. 33(18): p. 2951–2953.
[21]. Ribeiro, A.H., J.M.P. Soler, and R. Hirata, Jr., Variance-Preserving Estimation of Intensity Values Obtained From Omics Experiments. Front Genet, 2019. 10: p. 855.
[22]. Wu, P., et al., DROEG: a method for cancer drug response prediction based on omics and essential genes integration. Brief Bioinform, 2023. 24(2).
[23]. Majumdar, A., et al., kESVR: An Ensemble Model for Drug Response Prediction in Precision Medicine Using Cancer Cell Lines Gene Expression. Genes (Basel), 2021. 12(6).
[24]. Shen, J., et al., A non-negative spike-and-slab lasso generalized linear stacking prediction modeling method for high-dimensional omics data. BMC Bioinformatics, 2024. 25(1): p. 119.
[25]. Guo, Y., et al., A Similarity Regression Fusion Model for Integrating Multi-Omics Data to Identify Cancer Subtypes. Genes (Basel), 2018. 9(7).
[26]. Regner, M.J., et al., Defining the regulatory logic of breast cancer using single-cell epigenetic and transcriptome profiling. Cell Genom, 2025. 5(2): p. 100765.
[27]. Song, X., et al., Use of ultrasound imaging Omics in predicting molecular typing and assessing the risk of postoperative recurrence in breast cancer. BMC Womens Health, 2024. 24(1): p. 380.
[28]. Xiao, C., et al., Big Data Analysis and Application of Liver Cancer Gene Sequence Based on Second-Generation Sequencing Technology. Comput Math Methods Med, 2022. 2022: p. 4004130.
[29]. Anh, N.K., et al., Combining metabolomics and machine learning to discover biomarkers for early-stage breast cancer diagnosis. PLoS One, 2024. 19(10): p. e0311810.
[30]. Sui, Q., et al., Cisplatin resistance-related multi-omics differences and the establishment of machine learning models. J Transl Med, 2022. 20(1): p. 171.
[31]. Chauhan, P.S., et al., Urine cell-free DNA multi-omics to detect MRD and predict survival in bladder cancer patients. NPJ Precis Oncol, 2023. 7(1): p. 6.
[32]. Kwon, H.J., et al., Enhancing Lung Cancer Classification through Integration of Liquid Biopsy Multi-Omics Data with Machine Learning Techniques. Cancers (Basel), 2023. 15(18).
[33]. Huang, X., et al., Comprehensive multi-omics analysis of the m7G in pan-cancer from the perspective of predictive, preventive, and personalized medicine. Epma j, 2022. 13(4): p. 671–697.
[34]. Bostanci, E., et al., Machine Learning Analysis of RNA-seq Data for Diagnostic and Prognostic Prediction of Colon Cancer. Sensors (Basel), 2023. 23(6).
[35]. Yang, H., et al., From multi-omics data to the cancer druggable gene discovery: a novel machine learning-based approach. Brief Bioinform, 2023. 24(1).
[36]. Sun, Q., et al., SADLN: Self-attention based deep learning network of integrating multi-omics data for cancer subtype recognition. Front Genet, 2022. 13: p. 1032768.
[37]. Reierson, M.M. and A. Acharjee, Unsupervised machine learning-based stratification and immune deconvolution of liver hepatocellular carcinoma. BMC Cancer, 2025. 25(1): p. 853.
[38]. Sharma, A., Y. López, and T. Tsunoda, Divisive hierarchical maximum likelihood clustering. BMC Bioinformatics, 2017. 18(Suppl 16): p. 546.
[39]. Li, F., et al., NESM: a network embedding method for tumor stratification by integrating multi-omics data. G3 (Bethesda), 2022. 12(11).
[40]. Gu, W., et al., Multi-omics Analysis of Ferroptosis Regulation Patterns and Characterization of Tumor Microenvironment in Patients with Oral Squamous Cell Carcinoma. Int J Biol Sci, 2021. 17(13): p. 3476–3492.
[41]. Marshall, E.A., et al., Distinct bronchial microbiome precedes clinical diagnosis of lung cancer. Mol Cancer, 2022. 21(1): p. 68.
[42]. Deepali, N. Goel, and P. Khandnor, DeepOmicsSurv: a deep learning-based model for survival prediction of oral cancer. Discov Oncol, 2025. 16(1): p. 614.
[43]. Chang, W.H. and A.G. Lai, An integrative pan-cancer investigation reveals common genetic and transcriptional alterations of AMPK pathway genes as important predictors of clinical outcomes across major cancer types. BMC Cancer, 2020. 20(1): p. 773.
[44]. Chen, S., et al., Integrated multi-level omics profiling of disulfidptosis identifis SPAG4 as an innovative immunotherapeutic target in glioblastoma. Front Immunol, 2024. 15: p. 1462064.
[45]. Wang, L., et al., AI-driven eyelid tumor classification in ocular oncology using proteomic data. NPJ Precis Oncol, 2024. 8(1): p. 289.
[46]. Liu, Z., R. Ma, and Y. Zhong, Assessing and improving reliability of neighbor embedding methods: a map-continuity perspective. Nat Commun, 2025. 16(1): p. 5037.
[47]. Shi, J., et al., Integrated analysis reveals an aspartate metabolism-related gene signature for predicting the overall survival in patients with hepatocellular carcinoma. Clin Transl Oncol, 2024. 26(9): p. 2181–2197.
[48]. Jadamba, E. and M. Shin, A Systematic Framework for Drug Repositioning from Integrated Omics and Drug Phenotype Profiles Using Pathway-Drug Network. Biomed Res Int, 2016. 2016: p. 7147039.
[49]. Wang, C., et al., Deep learning and multi-omics approach to predict drug responses in cancer. BMC Bioinformatics, 2022. 22(Suppl 10): p. 632.
[50]. Gao, S., J. Rehman, and Y. Dai, Assessing comparative importance of DNA sequence and epigenetic modifications on gene expression using a deep convolutional neural network. Comput Struct Biotechnol J, 2022. 20: p. 3814–3823.
[51]. Wei, Q. and S.A. Ramsey, Predicting chemotherapy response using a variational autoencoder approach. BMC Bioinformatics, 2021. 22(1): p. 453.
[52]. Seal, D.B., et al., Estimating gene expression from DNA methylation and copy number variation: A deep learning regression model for multi-omics integration. Genomics, 2020. 112(4): p. 2833–2841.
[53]. Alzubaidi, A., J. Tepper, and A. Lotfi, A novel deep mining model for effective knowledge discovery from omics data. Artif Intell Med, 2020. 104: p. 101821.
[54]. Ahmed, K.T., et al., Multi-omics data integration by generative adversarial network. Bioinformatics, 2021. 38(1): p. 179–186.
[55]. Guttà, C., C. Morhard, and M. Rehm, Applying a GAN-based classifier to improve transcriptome-based prognostication in breast cancer. PLoS Comput Biol, 2023. 19(4): p. e1011035.
[56]. Mohammed, M.A., et al., A hybrid cancer prediction based on multi-omics data and reinforcement learning state action reward state action (SARSA). Comput Biol Med, 2023. 154: p. 106617.
[57]. Valous, N.A., et al., Graph machine learning for integrated multi-omics analysis. Br J Cancer, 2024. 131(2): p. 205–211.
[58]. Li, H., et al., CGMega: explainable graph neural network framework with attention mechanisms for cancer gene module dissection. Nat Commun, 2024. 15(1): p. 5997.
[59]. Fang, C., et al., Integrating knowledge graphs into machine learning models for survival prediction and biomarker discovery in patients with non-small-cell lung cancer. J Transl Med, 2024. 22(1): p. 726.
[60]. Li, M., et al., From text to insight: A natural language processing-based analysis of burst and research trends in HER2-low breast cancer patients. Ageing Res Rev, 2025. 106: p. 102692.
[61]. Malagoli, G., et al., Identification of Interpretable Clusters and Associated Signatures in Breast Cancer Single-Cell Data: A Topic Modeling Approach. Cancers (Basel), 2024. 16(7).
[62]. Liu, Z., et al., DIA-BERT: pre-trained end-to-end transformer models for enhanced DIA proteomics data analysis. Nat Commun, 2025. 16(1): p. 3530.
[63]. Shao, M., et al., Computational Drug Repurposing Based on a Recommendation System and Drug-Drug Functional Pathway Similarity. Molecules, 2022. 27(4).
[64]. Lin, B., et al., Intelligent oncology: The convergence of artificial intelligence and oncology. J Natl Cancer Cent, 2023. 3(1): p. 83–91.
[65]. Wei, L., et al., Artificial intelligence (AI) and machine learning (ML) in precision oncology: a review on enhancing discoverability through multiomics integration. Br J Radiol, 2023. 96(1150): p. 20230211.
[66]. Wysocka, M., et al., A systematic review of biologically-informed deep learning models for cancer: fundamental trends for encoding and interpreting oncology data. BMC Bioinformatics, 2023. 24(1): p. 198.
[67]. Pomyen, Y., et al., Deep metabolome: Applications of deep learning in metabolomics. Comput Struct Biotechnol J, 2020. 18: p. 2818–2825.
[68]. Chaddad, A., et al., Advancements in MRI-Based Radiomics and Artificial Intelligence for Prostate Cancer: A Comprehensive Review and Future Prospects. Cancers (Basel), 2023. 15(15).
[69]. Wen, X., et al., Clinlabomics: leveraging clinical laboratory data by data mining strategies. BMC Bioinformatics, 2022. 23(1): p. 387.
[70]. Wang, Y.L., et al., Role of artificial intelligence in digital pathology for gynecological cancers. Comput Struct Biotechnol J, 2024. 24: p. 205–212.
[71]. Chen, G., et al., Integrative analysis of multi-omics data for liquid biopsy. Br J Cancer, 2023. 128(4): p. 505–518.
[72]. Doykov, M., et al., Artificial Intelligence-Augmented Advancements in the Diagnostic Challenges Within Renal Cell Carcinoma. J Clin Med, 2025. 14(7).
[73]. Wang, Y., et al., Advances in artificial intelligence for the diagnosis and treatment of ovarian cancer (Review). Oncol Rep, 2024. 51(3).
[74]. He, M., et al., Research progress on deep learning in magnetic resonance imaging-based diagnosis and treatment of prostate cancer: a review on the current status and perspectives. Front Oncol, 2023. 13: p. 1189370.
[75]. Artesani, A., et al., Empowering PET: harnessing deep learning for improved clinical insight. Eur Radiol Exp, 2024. 8(1): p. 17.
[76]. Sollini, M., et al., Artificial intelligence and hybrid imaging: the best match for personalized medicine in oncology. Eur J Hybrid Imaging, 2020. 4(1): p. 24.
[77]. Fu, S.W., et al., Liquid biopsy for early cancer detection: technological revolutions and clinical dilemma. Expert Rev Mol Diagn, 2024. 24(10): p. 937–955.
[78]. Gottardo, A., et al., Exploring the potential of multiomics liquid biopsy testing in the clinical setting of lung cancer. Cytopathology, 2024. 35(6): p. 664–670.
[79]. Wang, X. and B.B. Li, Deep Learning in Head and Neck Tumor Multiomics Diagnosis and Analysis: Review of the Literature. Front Genet, 2021. 12: p. 624820.
[80]. Wang, J., Z. Zhang, and Y. Wang, Utilizing Feature Selection Techniques for AI-Driven Tumor Subtype Classification: Enhancing Precision in Cancer Diagnostics. Biomolecules, 2025. 15(1).
[81]. Dakal, T.C., et al., Emerging methods and techniques for cancer biomarker discovery. Pathol Res Pract, 2024. 262: p. 155567.
[82]. Allam, M., S. Cai, and A.F. Coskun, Multiplex bioimaging of single-cell spatial profiles for precision cancer diagnostics and therapeutics. NPJ Precis Oncol, 2020. 4: p. 11.
[83]. Dhanushkumar, T., et al., Advancements and hurdles in the development of a vaccine for triple-negative breast cancer: A comprehensive review of multi-omics and immunomics strategies. Life Sci, 2024. 337: p. 122360.
[84]. Patel, S.K., B. George, and V. Rai, Artificial Intelligence to Decode Cancer Mechanism: Beyond Patient Stratification for Precision Oncology. Front Pharmacol, 2020. 11: p. 1177.
[85]. Li, Y., et al., Informing immunotherapy with multi-omics driven machine learning. NPJ Digit Med, 2024. 7(1): p. 67.
[86]. Xie, J., et al., Advances in artificial intelligence to predict cancer immunotherapy efficacy. Front Immunol, 2022. 13: p. 1076883.
[87]. Abbasi, A.F., et al., Survival prediction landscape: an in-depth systematic literature review on activities, methods, tools, diseases, and databases. Front Artif Intell, 2024. 7: p. 1428501.
[88]. Yu, B., S. Shao, and W. Ma, Frontiers in pancreatic cancer on biomarkers, microenvironment, and immunotherapy. Cancer Lett, 2025. 610: p. 217350.
[89]. Tanaka, I., T. Furukawa, and M. Morise, The current issues and future perspective of artificial intelligence for developing new treatment strategy in non-small cell lung cancer: harmonization of molecular cancer biology and artificial intelligence. Cancer Cell Int, 2021. 21(1): p. 454.
[90]. Zhang, Q., et al., Deciphering gastric inflammation-induced tumorigenesis through multi-omics data and AI methods. Cancer Biol Med, 2023. 21(4): p. 312–30.
[91]. Donisi, C., et al., Immunotherapy and Cancer: The Multi-Omics Perspective. Int J Mol Sci, 2024. 25(6).
[92]. Katoh, M., FGFR inhibitors: Effects on cancer cells, tumor microenvironment and whole-body homeostasis (Review). Int J Mol Med, 2016. 38(1): p. 3–15.
[93]. Bhattacharya, T., et al., AI Meets Exascale Computing: Advancing Cancer Research With Large-Scale High Performance Computing. Front Oncol, 2019. 9: p. 984.
[94]. Moore, J.H. and N. Raghavachari, Artificial Intelligence Based Approaches to Identify Molecular Determinants of Exceptional Health and Life Span-An Interdisciplinary Workshop at the National Institute on Aging. Front Artif Intell, 2019. 2: p. 12.
[95]. Corti, C., et al., Artificial intelligence in cancer research and precision medicine: Applications, limitations and priorities to drive transformation in the delivery of equitable and unbiased care. Cancer Treat Rev, 2023. 112: p. 102498.
[96]. Chadokiya, J., et al., Advancing precision cancer immunotherapy drug development, administration, and response prediction with AI-enabled Raman spectroscopy. Front Immunol, 2024. 15: p. 1520860.
[97]. Taha, B.A., et al., Advancing optical nanosensors with artificial intelligence: A powerful tool to identify disease-specific biomarkers in multi-omics profiling. Talanta, 2025. 287: p. 127693.
[98]. Balasubramaniam, N.K., et al., Digitalomics - digital transformation leading to omics insights. Expert Rev Proteomics, 2024. 21(9-10): p. 337–344.
[99]. Shen, S., et al., From virtual to reality: innovative practices of digital twins in tumor therapy. J Transl Med, 2025. 23(1): p. 348.