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Abstract: AI-based multi-omics research has brought lots of outcomes and improvements in
biological science, especially in cancer research and clinics. However, these cutting-edge
techniques are inevitably facing lots of challenges. To clearly illustrate the advances and
challenges in this interdisciplinary field, an updated overview of AI and multi-omics
applications in cancer studies and an exploration of current paradigms of AI & omics in
cancer research are lacking. Here we explore this question in three different aspects:
application field, algorithms, and application paradigms of AI and multi-omics for cancer.
This research brings out a high-resolution, well-structured landscape of AI and omics for
cancer by summarizing reviews and recent related papers, and finally indicates the future
direction of AI-powered multi-omics cancer study and research gaps that need to be
explored.
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1. Introduction

Artificial intelligence (AI) and multi-omics techniques are two fields with great potential that are in
rapid development. AI is being increasingly integrated into scientific discovery, helping researchers
gain scientific insights [1]. Multi-omics, as part of bioinformatics, on the other hand, is poised to
revolutionize the future of healthcare [2]. AI combined with multi-omics creates tremendous
research value and application value, especially in cancer, an important aspect of health care.
Various breakthroughs were accomplished using AI and omics techniques. For example, in cancer
drug discovery, unlike traditional drug discovery methods, AI and multi-omics techniques can
efficiently create new, cost-effective cancer therapies by harnessing computing power [3]; AI-based
omics data empowered the biomarker discovery of cancer; for example, precision immune-
oncology, such as immune checkpoint inhibitors (ICIs) selection from high-dimension data
(including genomics, radionics, pathology, and real-world and multimodality data), exhibits a
tendency of meta-biomarker discovery using AI-based multimodal and multi-omics data [4]; by
combining images (including mammography (DM), digital breast tomosynthesis (DBT), magnetic
resonance imaging (MRI), ultrasound (US), and nuclear medicine techniques) and omics data, AI
algorithms can increase breast cancer diagnosis accuracy, classification accuracy, and prognosis
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prediction, such as metastasis, treatment response, and survival [5]. Although analysis of cancer and
tumor heterogeneity suffers from genetic and epigenetic complexity, multi-omics, spatial omics, and
AI show advantages in advanced precision medicine [6]. Reviews on AI-based systems biology
methods analyze omics data and emphasize the advances of these approaches in cancer
classification, prognosis, and precision medicine. Novel information dimensions, including clinical
data, radiation, and patient environment information, were discussed and analyzed to facilitate the
realization of precision patient healthcare [7, 8]. Till now, integrative multi-omics approaches have
been proven to precede single data types when dealing with complex patterns and accessing
meaningful information from large-scale omics big data; AI exhibits exceptional capacity, indicating
a future trade of AI and multi-dimensional omics cancer studies. But at the current stage, multi-
omics analysis and AI are still facing lots of challenges, and new perspectives for oncology research
are desired [9, 10]. Although all kinds of reviews and research have been done, an overview of the
AI method and the paradigm of AI & omics research is lacking. To illustrate these views, this review
focuses on the application field, algorithms, and application paradigms of AI and multi-omics for
cancer. A high-resolution, well-structured landscape of AI and omics for cancer lays out the
inadequacy of this field, points out the future direction of such work, and fills in the gaps that need
to be explored.

2. AI algorithms and methods for multi-omics cancer analysis

Artificial intelligence (AI) has rapidly transformed research across many fields. It can be broadly
categorized into four core components. First, perception—technologies like computer vision, speech
recognition, and language processing enable machines to collect and interpret external data. Second,
reasoning, planning, and acting encompass both deterministic and probabilistic approaches to
decision-making, such as propositional logic, probabilistic models (e.g., Markov chains, Bayesian
networks), and reinforcement learning. Third, knowledge representation focuses on structuring
information in ways that support inference and action, using tools like logic, knowledge graphs, and
ontologies. Fourth, integrated systems—such as robotics, expert systems, and multi-agent
frameworks—combine these capabilities to perform complex tasks. Deep learning, in particular,
enhances many of these components. These interconnected subfields allow AI to replicate or surpass
aspects of human intelligence. Based on this framework, we categorize multi-omics cancer research
by its application of key AI technologies [11, 12].

2.1. Signaling and language processing

Pathology slides, cancer staging information, and genomic mutation profiles, along with the
associated pathology reports, can be processed by Prov-GigaPath, a whole-slide pathology
foundation model, and generate accurate pathomics task results, such as cancer subtyping tasks.
Prov-Gigapath was pretrained using GigaPath, a novel vision transformer for pathology slides, and
then they paired each slide with an associated report using PubMedBERT, an advanced biomedical
language model, which makes Prov-Gigapath a state-of-the-art pathology vision-language model.
This model successfully combined a computer vision (image, in this case) model and a language
model using two transformer architectures [13].
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2.2. Reasoning in omics-cancer research

Causal relationship is important in cancer research. By using a causal reasoning model such as
COSMOS (Causal Oriented Search of Multi-Omics Space), researchers can access mechanistic
hypotheses for experimental observations across multi-omics datasets. COSMOS integrates
phosphoproteomics, transcriptomics, and metabolomics datasets and combines prior knowledge of
signaling, metabolic, and gene regulatory networks with computational methods to estimate
transcription factor activities, kinase activities, and network-level causal reasoning. The core
algorithm of COSMOS is CARNIVAL, which uses an integer linear programming (ILP)
optimization strategy to find the smallest coherent subnetwork causally connecting as many
deregulated TFs, kinases/phosphatases, and metabolites as possible [14].

2.3. Machine learning in omics-cancer research

Machine learning constitutes a big part of AI. Here we list out a table of ML sub-aspects and their
application in omics cancer research as follows. We also describe several sub-aspects in detail [15].

Table 1. ML algorithms in cancer omics

Category Representative Algorithms Key Applications in Cancer Omics

Supervised
Learning

Regression (Linear, SVR, RF), Classification
(SVM, RF, XGBoost)

Biomarker discovery, drug response modeling,
cancer classification and staging [16-31]

Supervised
Learning

Ensemble Methods (AdaBoost, Gradient
Boosting, deep forest)

Cancer diagnosis, prognosis, and stage prediction
[16, 32-35]

Unsupervised
Learning

Clustering (k-Means, HAC, DBSCAN),
PCA, Autoencoders

Tumor subtype identification, omics data
dimensionality reduction and latent feature

extraction [17, 36-41]
Unsupervised

Learning
Visualization and Dimension Reduction (t-

SNE, UMAP, MDS) Visualization of tumor clusters and subtypes [42-47]

Semi-Supervised
Learning Label Propagation Drug repositioning and discovery via semi-

supervised node labeling [48]

Deep Learning CNN (ResNet, iSEGnet), RNN (LSTM,
BiLSTM)

Gene expression prediction, transcription factor
discovery, cancer stage classification [34,49]

Deep Learning Autoencoders (VAE, DAE, SAE) Omics data compression, chemotherapy response
prediction [50-53]

Deep Learning Generative Adversarial Networks (GAN,
WGAN)

Synthetic data generation, patient risk stratification
[54, 55]

Reinforcement
Learning

Value/Policy-based Methods (Q-Learning,
SARSA, PPO)

Optimizing therapeutic strategies and hybrid
detection models [56]

Graphical Models
Graph Neural Networks (Node2Vec,

GraphSAGE), Knowledge Graphs (SPOKE,
Hetionet)

Integration and analysis of multi-omics data, cancer
gene prediction [57-59]

Natural Language
Processing (NLP)

Transformers (BERT, ChatGPT), Topic
Modeling (LDA)

Literature review automation, clustering, DIA
proteomics analysis [60-62]

Recommender
Systems

Collaborative and Content-based filtering
(SVD, Cosine Similarity)

Prioritizing candidate cancer drugs based on
functional similarity [63]
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2.3.1. Supervised ML and unsupervised ML

The core AI techniques for the whole chain of cancer care contain machine learning (ML), deep
learning (DL), and natural language processing (NLP). Supervised ML is normally implemented in
classification and regression, such as cancer subtype classification and prognostic prediction.
Popular supervised learning tools for oncology include Naive Bayes, logistic regression, k-nearest
neighbors (KNN), decision tree (DT), support vector machines (SVM), random forest (RF) [64], and
generalized linear model (GLM) [65]. Unsupervised ML is a statistical tool that is typically used for
clustering data based on its features and is commonly implemented in prognosis analysis, key
marker extraction, dimension reduction, and gene functional clustering. Popular algorithms in
unsupervised ML for oncology include principal component analysis (PCA), singular value
decomposition (SVD), k-means, mean-shift, hierarchical clustering, DBSCAN, optics clustering, et
al.

2.3.2. Deep learning

Deep learning algorithms are skilled at handling large datasets and extracting potentially advanced,
yet uninterpretable, semantic features through multilayer nonlinear transformations, and have been
proven to be accurate on target tasks. It is widely applicable in the clinical situation. The basic
modes include convolutional neural networks (CNN), recurrent neural networks (RNN), long short-
term memory (LSTM), fully convolutional networks (FCN), generative adversarial networks (GAN)
[64], multilayer perceptrons (MLP) [65], et al. More recent and innovative network structures
include graph convolutional networks (GCN), attention, multi-head attention, transformers, vision
transformers (ViT), autoencoders (AE), variational autoencoders (VAE), deep clustering, et al. For
non-annotation data such as digital pathology, single-cell omics, and spatial transcriptomics, a
contrastive learning algorithm is an effective tool for learning latent information automatically in a
self-supervised manner.

2.3.3. Natural language processing

Natural language processing (NLP) receives language or text data and transforms it using hand-
crafted or self-learned symbolic rules or using statistical approaches such as ML to learn language
phenomena and finally generate valuable information. NLP based on DL is dominant, as there are
many successful models under this track, such as ULMFiT, bidirectional encoder representations
from transformer (BERT), Transformer-XL, Google PaLM, GPT-3, et al. In cancer research, medical
records can be generated automatically, and key information can easily be extracted from non-
structured text data, including pathology and radiology reports and oncological clinical notes.

2.4. Knowledge representing and representing individuals’ knowledge and relations

Knowledge and relation representation are crucial in the interpretability of AI and omics-related
cancer research. To improve biocentric interpretability, knowledge and relation of knowledge are
represented as domain knowledge and relational knowledge, and integrated with DL models. This
new trend of converging external domain knowledge and the design of architectures that reflect the
structure of known biological mechanisms with DL models can bring expert-level model
explainability, more plausibility of these models, improved explanation quality, and fundamentally
of pos-hoc methods and repositioning of DL models from pure black box to explainable models
which provides new biological insight [66].
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2.5. Multi agent system, expert system, and robotics

2.5.1. Robotic process automation

In addition, robotic process automation (RPA), as an integrated intelligence of sensors, automation,
and AI, is widely used in research and clinical settings such as surgery, radiation oncology, oncology
nursing, and rehabilitation [64]. Omics data are somewhat inherently interconnected in the
biological processes, and although single omics data could contribute to a specific problem in cancer
research or clinical practice, it is inadequate to consider the interactions between all omics data. To
consider as much omics data as possible, one should integrate high-dimensional and heterogeneous
multi-omics features. Data cleaning and normalization methods such as Z-score normalization and
Min-Max scaling are required. Concatenating data from multi-omics and circumventing the “curse
of dimensionality” commonly requires conducting dimensionality reduction, which is achieved
using feature selection or feature extraction.

3. Application of AI for multi-omics

There are lots of applications when it comes to the combination of AI and multi-omics for cancer.
According to reviews, omics often includes genomics, transcriptomics, proteomics, metabolomics,
epigenetics [2, 67], radiomics [68], clinlabomics [69], pathology [70], and fragmentomics [71].

There are two aspects of applications in AI and multi-omics for cancer. One is based on the
healthcare process of cancer patients; the other is based on the biological mechanism of cancer. The
aspect of the healthcare process of cancer patients includes three subclassifications: diagnosis,
treatment, and prognosis. There are also studies in this aspect that cover all three subclassifications,
such as precision oncology and translational application. The aspects of the biological mechanism of
cancer include the molecular mechanism of cancer, signaling pathways of cancer, and cancer-related
biological mechanisms such as tumorigenesis, immune responses of cancer, tumor
microenvironment, and homeostasis, etc.

3.1. Application field paradigm

Application fields based on the medical or clinical care of cancer often include diagnosis, treatment,
and prognosis [72]. For diagnosis, pathological biopsy, radiomics imaging, and liquid biopsy are
frequently used. Pathology combined with DL exhibits better efficiency and accuracy compared
with traditional pathological diagnosis [73]. Radiomics, such as MRI, PET, and CT enhanced by AI,
show promising results too [74-76]. Liquid biopsy as an innovative noninvasive method for early
detection represents a great potential when integrated with AI technology [77]. Multi-omics liquid
biopsy was recently invented and can identify clinically valuable biomarkers [78]. As part of the
diagnosis, AI and omics are widely used in cancer classification too [72, 79, 80]. For treatment,
omics and AI are utilized in drug discovery, therapy decision-making using biomarkers, and therapy
decision-making or studies such as radiation, chemotherapy [65], vaccines, surgery, and
immunotherapy [81-85]. For prognosis, AI-based omics are often used in prognosis biomarker [81],
therapy efficiency prediction [86], and survival prediction [87].

Application fields based on the mechanism of cancer often include cancer-related molecular and
pathway studies, which might offer valuable information, such as potential diagnosis-to-prognosis
biomarkers and treatment targets [88]. AI-driven interpretable biomarker profiling has the potential
to identify targets based on biological mechanisms [89]. Cancer-related biological mechanisms such
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as inflammation [90], immune processes [91], homeostasis [92], tumor microenvironment (TME),
and therapy resistance mechanisms [88].

3.2. Framework paradigm

AI-driven multi-omics for cancer typically follows a structured framework that integrates biological
data generation, computational processing, and interpretability-driven modeling.

3.2.1. Data acquisition and engineering

To maximize the potential of multi-omics, large-scale, tissue-specific datasets are essential [2].
Advances in bioengineering enable the capture of diverse molecular features using top-down and
bottom-up approaches. Top-down methods maintain the physiological context of tissues, whereas
bottom-up techniques use microfluidic interfaces to reconstruct dynamic tissue-like environments,
producing highly reproducible data [82].

Domain knowledge, including biological pathways and protein–protein interaction (PPI)
networks, is increasingly integrated into model architecture. Incorporating such knowledge
improves post-hoc interpretability, suggesting that domain-informed designs are crucial for
revealing mechanistic insights [66].

Before integration, omics data require rigorous pre-processing, including normalization and
cleaning [8]. Integration strategies include early integration, which concatenates raw or engineered
features before modeling but struggles with heterogeneity and dimensional imbalance; late
integration, where individual models are trained on separate omics and combined at the decision
stage—a preferred strategy for heterogeneous data types like radiomics and genomics; and
intermediate integration, which learns joint representations from each modality and combines them
for downstream prediction [65].

3.2.2. Computational framework and feature strategies

Modern computing platforms such as DOE Leadership Computing Facilities (LCF) and HPC
systems enable parallelized training of large-scale models through high-speed interconnects [93].
These resources are vital for deep learning-based multi-omics applications that require intensive
simulation and training.

Dimensionality reduction is essential to mitigate overfitting in high-dimensional omics datasets.
This can be achieved through feature selection or feature extraction. These methods can be either
supervised or unsupervised, depending on label availability. Unsupervised feature selection methods
include correlation analysis and variance-based approaches. Data with labels processed with
supervised feature selection methods identify the most correlated features via univariate or
multivariate tests, random forest (RF), least absolute shrinkage and selection operator (LASSO), etc.
Unsupervised feature extraction methods include clustering, autoencoders, and matrix factorization
techniques such as principal component analysis (PCA) and singular value decomposition (SVD).
Supervised feature extraction methods include linear discriminant analysis (LDA), deep neural
pursuit (DNP), etc. Model choice should reflect dataset characteristics: linear models are well-suited
for small sample sizes, while random forests or deep neural networks may be feasible if combined
with domain-appropriate data augmentation. Validation through cross-validation is necessary, and
trade-offs among accuracy, interpretability, and computational cost must be considered. Different
dimensionality reduction methods are already used to further reduce feature dimensions in treatment
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response prediction. In addition, it may not be necessary to reduce feature dimensions before
integrating multi-omic features when using DL methods because DL models can learn a
representation from raw features [65, 89, 94].

3.2.3. Model design, interpretability, and validation

Initiatives such as JDACS4C, a collaboration between the NCI and DOE, demonstrate how AI
systems can support cancer research through modular, interpretable model designs. Model features
are categorized as experiment-related (design tools), data-related (synthetic data generation,
modality conversion), and model-related (hyperparameter tuning, inference, uncertainty
quantification). Interpretability plays a central role in bio-informed model evaluation. Architecture-
centric approaches use schema-level representations to enhance transparency, while output-centric
designs align domain knowledge with predictions. Post-hoc methods trace information flow within
the model, highlighting the contribution of specific neurons or layers [66]. Finally, validation
frameworks employing uncertainty quantification (UQ) assess robustness to noise, overfitting, and
extrapolation. UQ is essential for detecting unreliable predictions and guiding experimental
refinement, especially under multi-modal uncertainties [65].

4. Ethical and privacy issues

The development of intelligent oncology involves ethical, philosophical, moral, and economic issues
as well as a variety of uncontrollable problems and unknown risks. Most of the ethical concerns
related to healthcare applications of AI are summarized into the “fairness, accountability, and
transparency (FAT) paradigm of AI ethics.” Explainability and interpretability of AI methods are still
an issue. Sensitive information also raises concerns about data protection and privacy. Many
countries have introduced relevant laws and policies to promote the reasonable applications of AI in
healthcare systems. In 2021, the US Food and Drug Administration (FDA) identified a workflow for
AI- and ML-based software as a medical device (SaMD) [64, 76]..

To estimate the risk of bias and usefulness of the AI model, guidelines have been made to ensure
the reproducibility and transparency of AI in medical conditions. For example, recommendations for
the reporting of developing, validating, or updating a diagnostic or prognostic prediction model [65].

Supervision of medical AI has been adapted from approaches that ensure the safety and efficacy
of drugs and conventional medical devices. The FDA considers clinical AI as a software-based
medical device, and it involves the approval of a “static” model and additional approval when any
change in data, algorithm, or intended use is made. More recently, the FDA took out a regulatory
framework with new post-authorization considerations that are important for clinical AI, such as
predetermined change control plans that specify parameters and methodology they intend to modify
in the future [95].

5. State-of-the-art techniques

Advancements in nanophotonics have made Raman spectroscopy a non-invasive, label-free method
capable of analyzing the tumor microenvironment, predicting biomarkers, and monitoring drug
responses at subcellular resolution. When combined with AI and omics data, it offers deeper insights
into tumor heterogeneity [96]. AI-driven optical nanosensors also enhance biomarker discovery and
personalized treatment by enabling comprehensive multi-omics analysis [97].



Proceedings	of	ICBioMed	2025	Symposium:	AI	for	Healthcare:	Advanced	Medical	Data	Analytics	and	Smart	Rehabilitation
DOI:	10.54254/2753-8818/2025.AU25982

37

Digital omics standardizes clinical and omics data into secure, interpretable digital formats,
improving healthcare delivery through transparency and efficiency [98]. Digital twin (DT)
technology, originating from aerospace, creates real-time virtual models of tumors using patient
data, simulating disease progression and optimizing treatment plans. As DT systems evolve, they
may become essential tools for precision oncology, bridging real-world data with predictive
modeling [99].

6. Conclusions

This review provides an updated overview of AI and omics techniques in cancer research and
applications. Based on previous reviews, we list out common algorithms of AI and multi-omics for
cancer and summarize the application field paradigm of AI and multi-omics for cancer. In addition,
we exhibited the omics data integration paradigm and the general framework paradigm of AI and
omics cancer study. Although the existence of a general framework and analysis paradigms, biases
are common in any of the steps of analysis. Further improvement should be made to enhance the
reliability of the data and analysis tools with more advanced algorithms, omics-tech,
interdisciplinary cooperation, and ethical policies. This review arranged the current development
situation of the AI and omics techniques and patterns in cancer studies and pointed out the
deficiencies of this field, calling for better outcomes in AI and omics cancer studies.
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