References
[1]. Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637-654. https: //doi.org/10.1086/260062
[2]. Derman, E. (1999). Regimes of volatility. Goldman Sachs Quantitative Strategies Research Notes, April.
[3]. Merton, R.C. (1976). Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics, 3(1-2), 125-144. https: //doi.org/10.1016/0304-405X(76)90022-2
[4]. Cont, R. (2001). Empirical properties of asset returns: Stylized facts and statistical issues. Quantitative Finance, 1(2), 223-236. https: //doi.org/10.1080/713665670
[5]. Zhang, L., Wang, H., & Li, J. (2017). Institutional characteristics and option pricing in emerging markets: The case of China. Emerging Markets Review, 31, 1-15. https: //doi.org/10.1016/j.ememar.2016.12.001
[6]. Heston, S.L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies, 6(2), 327-343. https: //doi.org/10.1093/rfs/6.2.327
[7]. Bates, D.S. (1996). Jump and stochastic volatility: Exchange rate processes implicit in deutsche mark options. Review of Financial Studies, 9(1), 69-107. https: //doi.org/10.1093/rfs/9.1.69
[8]. Gatheral, J. (2006). The Volatility Surface: A Practitioner's Guide. Wiley Finance.
[9]. Liu, X., Zhang, Y., & Chen, W. (2019). Neural stochastic differential equations for option pricing. Journal of Computational Finance, 23(3), 1-28. https: //doi.org/10.21314/JCF.2019.358
[10]. Ruf, J., & Wang, W. (2020). Neural networks for option pricing and hedging: A literature review. Journal of Computational Finance, 24(1), 1-46. https: //doi.org/10.21314/JCF.2020.409
[11]. Merton, R.C. (1973). Theory of rational option pricing. Bell Journal of Economics and Management Science, 4(1), 141-183. https: //doi.org/10.2307/3003143
[12]. Hull, J.C. (2018). Options, Futures and Other Derivatives (10th ed.). Pearson.
[13]. Billingsley, P. (1999). Convergence of Probability Measures (2nd ed.). Wiley.
[14]. Shreve, S.E. (2004). Stochastic Calculus for Finance II: Continuous-Time Models. Springer. https: //doi.org/10.1007/978-1-4757-4296-1
[15]. Duffie, D., Pan, J., & Singleton, K. (2000). Transform analysis and asset pricing for affine jump-diffusions. Econometrica, 68(6), 1343-1376. https: //doi.org/10.1111/1468-0262.00164
[16]. Cont, R., & Voltchkova, E. (2005). Finite difference methods for option pricing in jump-diffusion and exponential Lévy models. SIAM Journal on Numerical Analysis, 43(4), 1596-1626. https: //doi.org/10.1137/030600810
[17]. Glasserman, P. (2004). Monte Carlo Methods in Financial Engineering. Springer. https: //doi.org/10.1007/978-0-387-21617-1
[18]. Longstaff, F.A., & Schwartz, E.S. (2001). Valuing American options by simulation: A simple least-squares approach. Review of Financial Studies, 14(1), 113-147. https: //doi.org/10.1093/rfs/14.1.113
[19]. Wilmott, P., Dewynne, J., & Howison, S. (1995). The Mathematics of Financial Derivatives: A Student Introduction. Cambridge University Press.
[20]. Çetin, U., Jarrow, R.A., & Protter, P. (2004). Liquidity risk and arbitrage pricing theory. Finance and Stochastics, 8(3), 311-341. https: //doi.org/10.1007/s00780-004-0123-x
[21]. Luo, R., Zhang, Y., & Chen, W. (2018). GANs for financial volatility surfaces. Proceedings of the 32nd International Conference on Neural Information Processing Systems, 1027-1038.
[22]. Bayer, C., Gatheral, J., & Karlsmark, M. (2019). Fast neural network approach for direct covar estimation. Journal of Computational Finance, 22(3), 1-28. https: //doi.org/10.21314/JCF.2019.358
[23]. Rebentrost, P., Gupt, B., & Bromley, T.R. (2018). Quantum computational finance: Monte Carlo pricing of financial derivatives. Physical Review A, 98(2), 022321. https: //doi.org/10.1103/PhysRevA.98.022321
[24]. Barberis, N., Huang, M., & Santos, T. (2001). Prospect theory and asset prices. Quarterly Journal of Economics, 116(1), 1-53. https: //doi.org/10.1162/003355301556310