References
[1]. Hairer, E., & Wanner, G. (1996). Solving ordinary differential equations II: Stiff and differential-algebraic problems (2nd ed.). Springer.
[2]. Hairer, E., Nørsett, S. P., & Wanner, G. (1993). Solving ordinary differential equations I: Nonstiff problems (2nd ed.). Springer.
[3]. Shampine, L. F., & Gear, C. W. (1979). A user's view of solving stiff ordinary differential equations. SIAM Review, 21(1), 1–17.
[4]. Ascher, U. M., & Petzold, L. R. (1998). Computer methods for ordinary differential equations and differential-algebraic equations. SIAM.
[5]. Shampine, L. F. (1982). Implementation of Rosenbrock methods. ACM Transactions on Mathematical Software, 8(2), 93–113.
[6]. Kaps, P., Poon, S. W. H., & Bui, T. D. (1985). Rosenbrock methods for stiff ODEs. Computing, 34(4), 307–320.
[7]. Gustafsson, K., Lundh, M., & Söderlind, G. (1988). A PI step size control for the numerical solution of ODEs. BIT Numerical Mathematics, 28(2), 270–287.
[8]. Benner, P., & Mena, H. (2013). Rosenbrock methods for solving Riccati differential equations. IEEE Transactions on Automatic Control, 58(11), 2950–2956.
[9]. Savcenco, V., Hundsdorfer, W., & Verwer, J. G. (2007). A multirate time stepping strategy for stiff ordinary differential equations. BIT Numerical Mathematics, 47(1), 137–155.
[10]. Deka, P. J., & Einkemmer, L. (2022). Efficient adaptive step size control for exponential integrators. Computers & Mathematics with Applications, 121, 96–110.
[11]. Pozzer, A., Müller, J. F., Knote, C., & D’Angelo, A. (2025). Optimized step size control within the Rosenbrock solvers for stiff chemical ODE systems in KPP. Geoscientific Model Development Discussions.