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Abstract.  Stiff ordinary differential equations (ODEs) present significant challenges for
numerical solvers due to their multiscale nature and stringent stability requirements.
Traditional methods, such as fixed-step schemes, often suffer from low computational
efficiency, while fully implicit approaches may introduce numerical instability. This study
proposes an improved adaptive Rosenbrock method that incorporates a PI controller-based
step size adjustment mechanism and a selective Jacobian matrix update strategy to enhance
both efficiency and stability. Numerical experiments on the Robertson chemical kinetics
model demonstrate that, compared to conventional fixed-step solvers, the proposed method
reduces the number of integration steps to just 0.4% of the original while maintaining high
accuracy and significantly mitigating unphysical phenomena such as negative
concentrations. These results emphasize the excellent performance of the adaptive
Rosenbrock framework in solving stiff ordinary differential equation (ODE) systems. Future
work may extend this approach to partial differential equations, automatic tuning of
controller parameters, and stiffness prediction using machine learning techniques.

Keywords:  Stiff differential equations, Adaptive step size, Rosenbrock method, Jacobian
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1. Introduction

The numerical solution of stiff ordinary differential equations (ODEs) poses serious challenges. In
traditional explicit methods (such as the Euler method), maintaining numerical stability requires
extremely small time steps due to the rapid decay or strong oscillations of certain solution
components. The root cause of this issue lies in the multiscale nature of stiff problems—different
solution components evolve at vastly different rates, often spanning several orders of magnitude.
This disparity renders conventional explicit solvers highly inefficient. In their seminal work, Hairer
and Wanner [1] emphasized the need to develop specialized numerical algorithms for such
problems. As early as 1993 [2], they had established a theoretical framework for explicit and basic
implicit methods aimed at non-stiff problems, where the solution components typically exhibit more
uniform temporal behavior.

The primary difficulty in solving stiff problems lies in the need to compute Jacobian matrices and
subsequently solve the associated linear systems. These operations are computationally intensive
and prone to numerical instability. Notably, stiff systems are common in real-world applications
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such as chemical reaction kinetics, biomedical modeling, and circuit analysis [3], where numerical
methods must simultaneously ensure stability and computational efficiency.

Among current mainstream approaches, implicit Euler and implicit Runge-Kutta methods offer
favorable stability but require the repeated solution of complex nonlinear systems, leading to
exponentially increasing computational costs [4]. Semi-implicit methods such as the Rosenbrock
family attempt to strike a balance by combining implicit and explicit components, thereby
improving computational efficiency to some extent. However, the associated computational
overhead remains significant.

This research is aimed at overcoming these limitations through introducing an innovative
adaptive step - size optimization strategy, which significantly enhances the efficiency of solving stiff
ordinary differential equations (ODEs). Using the Rosenbrock method as a foundation, we develop
an intelligent adaptive step size control algorithm that achieves an optimal trade-off between
computational accuracy and efficiency. With the rapid advancement of high-performance
computing, such adaptive methods are expected to demonstrate unprecedented advantages in
addressing large-scale, complex problems.

2. Methodology

2.1. Standard form of stiff differential equations

The standard form of a stiff differential equation is:

where

or

where     is the Jacobian matrix of the system, and  are its eigenvalues, which define the
characteristics of stiffness [5]. Such systems exhibit a characteristic multiscale nature: some
variables change rapidly, while others evolve slowly. When using explicit methods to solve these
systems, maintaining numerical stability necessitates extremely small time steps, which significantly
reduces computational efficiency. Therefore, in practical computations, implicit or semi-implicit
methods are generally preferred.

The aim of this study is to substantially improve computational efficiency while maintaining L -
stability by integrating three crucial techniques: the Rosenbrock method, adaptive step - size control,
and Jacobian matrix optimization.

2.2. Algorithm framework

The entire algorithm framework consists of three core modules: stiffness detection, step size control,
and Jacobian matrix optimization. These modules cooperate with each other, and the specific
process is as follows:

y' = f (t, y) (1)

∥ Jf ∥≫ 1 (2)

Re (λi) ≪ 0 (3)

 Jf  λi
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Figure 1: Adaptive stiff ODE solver framework

As shown in Figure 1, the framework includes the following components:
•  Stiffness detection: Determine whether the system is stiff based on the spectral radius. If

stiffness is detected, a sparse solving strategy is enabled.
•  Step size control: Dynamically adjust the step size based on the solution error to balance

accuracy and efficiency.
•  Jacobian matrix optimization: Decide whether to update the Jacobian matrix based on the

frequency of changes in the solution and select either a sparse or full Jacobian depending on the
stiffness.

2.3. Rosenbrock method

The Rosenbrock method is a semi - implicit scheme that is especially suitable for stiff ordinary
differential equations (ODEs). It combines explicit and implicit computations and can maintain
stability even when using large step sizes, providing an efficient alternative to traditional implicit
methods.

The core formula is:

Where     is the identity matrix,     is the step size,    is the Jacobian matrix, and     are the stage
increments,    , γ,    are the determining coefficients, s is stage number [1].

The method ensures L-stability, making it robust against rapid variations [6].

2.4. Adaptive step size control

Adaptive step size control adjusts the step size based on the local error, reducing it for rapid changes
and enlarging it for slow variations to improve efficiency.

• A PI controller is employed, with the formula:

    is the new time step to be used,     is the current time step,     is the estimated local error
at the current step,     is the estimated error from the previous step, p is the order number, and 

 is the target error tolerance.
This PI control was introduced to address instability phenomena observed in stiff numerical

computations [7]. Then the strategy elaborated by Hairer and Wanner [1], effectively balances
responsiveness and stability by incorporating both current and historical error information.

(I − hγJ)ki = hf (yn + ∑i−1
j=1 αijkj) + hJ∑i−1

j=1 γijkj (4)

yn+1 = yn + ∑s
j=1 bjkj (5)

I h  J  ki

αij bj 

hn+1 = hn(
Tol

∣errn∣ )
α
(

∣errn−1∣
Tol )

β
(6)

α ≈ 0.7
p , β ≈ 0.4

p (7)

hn+1 hn errn

errn−1

 Tol 
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• The error estimation formula:

2.5. Jacobian matrix optimization

For large-scale stiff problems, the Jacobian is often sparse.We adopt the Curtis-Powell-Reid sparse
difference method to reduce computational cost [8],

(1) Assume the system dimension is    , and    with the Jacobian matrix   .
(2) Partition the variables    into several groups, such that variables within the same

group have a non-overlapping influence on the system.
(3) Perturb each group GG of variables simultaneously and compute:

where    is the sum of the unit vectors corresponding to the variables in group    , and     is a
small perturbation.

(1) Approximate the Jacobian columns corresponding to the variables in     from    .
(2) As a result, the number of function evaluations required to approximate the Jacobian is

approximately:

where     is the number of nonzero elements in the Jacobian matrix and     is the
number of columns.

Compared to dense solvers with complexity     , sparse system solvers can achieve
complexity between    , offering substantial speedups for large-scale problems.

A dynamic threshold strategy is adopted to decide when to update the Jacobian matrix [8]:

Set a threshold     . If    , update the Jacobian. If     , reuse the previously
computed Jacobian.

3. Results

In this section, the classical Robertson chemical kinetics model is used as a benchmark test case to
comprehensively evaluate the performance of the proposed adaptive Rosenbrock method in solving
stiff ordinary differential equations (ODEs). The study focuses on three key performance indicators:
numerical stability, computational efficiency, and preservation of physical consistency. A
quantitative comparison is conducted against the traditional fixed-step Rosenbrock algorithm to
highlight the advantages of the adaptive approach.

3.1. Problem description and setup

The Robertson problem describes a stiff chemical kinetics system with three species and reactions
that evolve on vastly different time scales. The system is defined by the following ODEs:

∣ errn ∣= y
(p)
n+1 − y

(p−1)
n+1 ∞∥ ∥ (8)

n  f : Rn → R
n  J

 y1,  y2, … ,  yn

Δf = f (y + ϵ ⋅ eG) − f (y) (9)

 eG G ϵ

G Δf

Neval = nnz(J)
ncol(J) (10)

 nnz(J) ncol(J) 

O(n3)

O(nlogn)

Δyn = ∥ yn − yn−1 ∥∞ (11)

ϵJ  Δyn > ϵJ Δyn ≤ ϵJ
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with initial values:

Simulations were conducted over the interval    , using two different solvers:
Fixed-Step Rosenbrock Method: constant step size    .
Adaptive Rosenbrock Method: initial step size     1, dynamic PI-controller, adaptive

Jacobian update.

3.2. Performance comparison

    Evolution
Figure 1 shows the evolution of    over time. During the early stages (t<10), both methods align

closely, confirming that the solvers are consistent in capturing the initial transient dynamics. As time
progresses, the adaptive method slightly diverges from the fixed-step solution, exhibiting a faster
decay in     ​. This behavior reflects the effect of increasing step sizes, which may trade off fine-
grained resolution for efficiency.

However, the overall trend remains accurate, and the deviation remains within acceptable bounds
for most practical applications. This indicates that the adaptive method balances speed and stability
well during long-time integration.

Figure 2: Comparison of  using fixed and adaptive Rosenbrock methods

    Evolution
Figure 2 presents the evolution of     , which remains near zero but is highly sensitive to

numerical instability. The fixed-step solver produces negative values in the interval   . This
results in unphysical behaviour, as the fixed-step method produces a minimum      value of
-0.002548, violating the non-negativity requirement for chemical concentrations.

In contrast, the adaptive method preserves non-negativity much more effectively, with a
minimum      value of only -0.000340, indicating improved numerical stability. Although still

⎧⎪⎨⎪⎩ y
'
0 = −0.04y0 + 104y1y2

y1' = 0.04y0 − 104y1y2 − 3 × 107y1
2

y2' = 3 × 107y1
2

(12)

y0 (0) = 1, y1 (0) = 0, y2 (0) = 0 (13)

t ∈ [0,40]

h = 0.01

h0 = 0.01

y0

 y0

y0

 y[0]

y1

y1

t  =  30–40

y1

y1
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slightly negative, the error is significantly reduced, showing that adaptive time stepping is more
robust in handling near-zero stiff components.

Figure 3: Comparison of  y[1] using fixed and adaptive Rosenbrock methods

3.3. Error and efficiency evaluation

The adaptive Rosenbrock method adjusts its step size based on the PI-controller:

This demonstrates that the adaptive method uses small time steps during rapid transients and
significantly fewer steps overall—only 15 compared to 4001 with the fixed-step method—
highlighting its drastic improvement in computational efficiency.

This constitutes a 99.6% reduction in step count while maintaining comparable solution accuracy.
The dramatic step count difference highlights the power of dynamic control, especially in stiff
systems where slow dynamics dominate most of the integration interval.

Furthermore, Jacobian matrices are updated only when necessary, based on a dynamic threshold
condition, reducing costly matrix computations. This enhances the practical efficiency of the
adaptive method in large-scale systems.

3.4. Summary table

Table 1: Summary of solver performance on the Robertson problem

Method Step Count Min y [1] Stability Max Local Error (est.)

Fixed-Step Rosenbrock 4001 -0.00255 Yes ~1e-3
Adaptive-Step Rosenbrock 15 -0.00034 Yes ~1e-4

This table clearly illustrates that the adaptive Rosenbrock method outperforms the fixed-step
method in terms of both efficiency and stability. The adaptive approach requires significantly fewer
steps while maintaining solution accuracy and enforcing physically meaningful constraints,
particularly in variables with small magnitudes.

hn+1 = hn( Tol
∣errn∣ )

α
( ∣errn−1∣

Tol )
β

(14)

α ≈ 0.7
p , β ≈ 0.4

p (15)
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4. Discussion

4.1. Algorithm advantages

The results indicate that adaptive step size optimization and Jacobian matrix control offer significant
advantages in solving stiff ordinary differential equations. The proposed algorithm exhibits the
following key features:

First, the adaptive Rosenbrock method achieves a substantial 99.6% reduction in integration steps
in the Robertson problem while fully maintaining numerical stability—an especially critical feature
for large-scale simulations and real-time applications. Second, the method better preserves the
physical plausibility of the solution, particularly for stiffness-sensitive components such as y₁, where
it significantly mitigates the appearance of unphysical negative values compared to the fixed-step
approach. This outcome aligns with the findings of Savcenco [9], who demonstrated the superiority
of multirate Rosenbrock strategies in preserving physical constraints during stiff transients.

In addition, the selective Jacobian update strategy strikes a good balance between computational
cost and accuracy. By using a threshold-based mechanism, the Jacobian matrix is only updated when
significant changes are detected, thereby avoiding unnecessary recomputation.

4.2. Limitations and challenges

Despite its clear strengths, the method also has certain limitations. The PI controller parameters
currently require manual tuning, and improper settings may cause the step size to grow too
significantly, resulting in minor but non-negligible violations of physical constraint. Deka and
Einkemmer [10] similarly noted that poorly tuned adaptive controllers can degrade the performance
of exponential integrators.

Moreover, the Jacobian optimization strategy assumes some level of sparsity or structural
regularity, which may not be valid for arbitrary systems. The current error estimation approach is
instructive and may not yield optimal performance across different problem domains. Pozzer et al.
[11] specifically pointed out that in chemical kinetic systems with rapidly varying stiffness, naive
step size adaptation strategies may still result in numerical instabilities or step rejections.

4.3. Future work

Future work may concentrate on improving the proposed algorithm by integrating adaptive learning
strategies or problem - specific heuristics to automatically adjust the PI controller parameters.
Additionally, integrating stiffness indicators or machine learning models could enable dynamic
prediction of optimal step sizes and Jacobian update frequencies. The method can also be extended
to the solution of partial differential equations (PDEs), broadening its applicability. Furthermore,
exploring its parallelization potential in high-performance computing environments may
significantly improve computational efficiency and promote its practical adoption in large-scale
scientific simulations.

5. Conclusion

This study proposes an improved adaptive Rosenbrock algorithm for solving stiff ordinary
differential equations (ODEs), incorporating dynamic step size control and selective Jacobian matrix
updates. Using the classical Robertson problem as a benchmark, the method was systematically
evaluated in terms of computational efficiency and numerical stability.
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Experimental results demonstrate that the proposed method significantly enhances computational
performance without compromising accuracy. Compared to the fixed-step Rosenbrock solver, the
adaptive version reduced the number of integration steps by 99.6% while fully maintaining
numerical stability. Notably, it effectively addressed non-physical behaviors such as oscillations and
negative values in the y₁ component observed under fixed-step conditions.

This study presents three key innovations. First, it introduces a PI controller-based intelligent step
size adjustment system that dynamically optimizes the step size in response to variations in error and
stiffness during computation. Second, a novel threshold-triggered Jacobian update mechanism is
proposed to minimize redundant computations by performing updates only when necessary. Finally,
the method is specifically tailored for multiscale stiff systems, striking a balance between
computational speed and solution reliability, thereby demonstrating strong practicality and potential
for broader application.

These findings confirm that the adaptive Rosenbrock method provides an efficient and robust
computational framework for stiff ODEs, particularly suited to long-term simulations or real-time
applications. Future work may focus on extending this method to partial differential equations
(PDEs) and differential-algebraic systems (DAEs), developing automated parameter tuning
algorithms, integrating smart stiffness monitoring techniques, and exploring its synergy with
machine learning approaches. This study offers a promising new solution for the numerical
simulation of stiff systems.
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