References
[1]. Groh, G., & Ehmig, C. (2007, November). Recommendations in taste related domains: collaborative filtering vs. social filtering. In Proceedings of the 2007 ACM international conference on supporting group Work (pp. 127-136).
[2]. Diakopoulos, N., & Koliska, M. (2017). Algorithmic transparency in the news media. Digital journalism, 5(7), 809-828.
[3]. Shin, D. (2020). How do users interact with algorithm recommender systems? The interaction of users, algorithms, and performance. Computers in human behavior, 109, 106344.
[4]. Guo, Y. X., & Zhang, X. (2025). The Impact Mechanism of Algorithmic Transparency on User Trust in Intelligent Recommendation Systems of Internet Platforms. Journal of Computers, 36(3), 335-348.
[5]. Lambrecht, A. & Tucker, C. (2021). The Impact of Recommender Systems on Consumer Decision-Making. Journal of Marketing Research, 58(3), 447-468.
[6]. Allcott, H., Braghieri, L., Eichmeyer, S., & Gentzkow, M. (2020). The welfare effects of social media. American economic review, 110(3), 629-676.
[7]. Andersson, S. and de Vries, P. (2023). The filter bubble: how algorithms limit cognitive diversity. Nature Human Behaviour, 7(5), 682-694.
[8]. Garimella, K. et al. (2022). Echo chambers in social media. Proceedings of the ACM Web Science Conference (WebSci), 1-10.
[9]. Mathur, A. et al. (2023). Dark patterns in personalization. Proceedings of the ACM on Human-Computer Interaction, 7(CSCW), 1-25.
[10]. Zhao, Y., Wang, Y., Liu, Y., Cheng, X., Aggarwal, C., & Derr, T. (2023). Feedback Loop and Bias Amplification in Recommender Systems: A Survey. arXiv.
[11]. Yang, X., Wu, X., & Zhang, L. (2025). An Exploratory Study on Information Cocoon in Recommender Systems. Frontiers of Computer Science.
[12]. Sonboli, N., Smith, J. J., Cabral Berenfus, F., Burke, R., & Fiesler, C. (2021, June). Fairness and transparency in recommendation: The users' perspective. In Proceedings of the 29th ACM Conference on User Modeling, Adaptation and Personalization (pp. 274-279).
[13]. Romero-Meza, R., & D'Urso, V. (2024). Choice overload and user fatigue in recommender systems: Behavioral evidence and mitigation strategies. Journal of Behavioral Decision Making.
[14]. Ahmed, S., & Rasul, M. (2023). Examining the association between social media fatigue, cognitive ability, narcissism, and misinformation sharing. Scientific Reports, 13, 15416.