The Positive and Negative Impacts of Social Media Algorithms on Consumer Behavior and Optimization Strategies

Jiayi Jin¹, Jianrui Liu^{2*}, Haoting Ying³

¹Macduffie School, Tianjin, China ²University of Nottingham, Nottingham, UK ³Andrews Osborne Academy, Willoughby, US *Corresponding Author. Email: Biyjl93@nottingham.edu.cn

Abstract. The effects of social media algorithms on consumer behavior have received considerable attention, but the strategies to assuage the negative effects of it remain insufficient. This paper analyzes the dual influences of algorithmic mechanisms, which is on the one hand, enhance efficiency meanwhile inducing information cocoons and polarization and on the other hand, cause the influence on psychological and behavioral outcomes. The study reveals that while algorithms improve information matching and reduce decision costs, the system, in the meantime, concurrently diminishes content diversity and increases political polarization rates, alongside pervasive privacy risks. To address these issues, this paper proposes: First, developing explainable recommendation systems as well as real-time user fatigue monitoring to enhance transparency and responsiveness. Second, cultivating algorithmic literacy education as well as active information-seeking behavior for the empowerment of users. These recommendations seek to strike a balance between personalized services and responsible design for the promotion of an equitable digital ecosystem.

Keywords: Social Media Algorithms, Consumer Behavior, Psychological and Behavioral Outcomes

1. Introduction

In the contemporary digital landscape, social media has evolved into a ubiquitous force, with its underlying algorithms deeply integrated into the daily routines and cognitive processes of billions of users worldwide. These intricate computational systems have fundamentally re-engineered the paradigms of information dissemination and consumption, shifting from a generalized broadcast model to one of hyper-personalized, predictive content delivery. By continuously analyzing user data--from explicit preferences to subtle behavioral cues--these algorithms curate feeds with tailored recommendations that not only mediate social interactions but also subtly yet powerfully navigate consumer decision-making pathways. This pervasive and often opaque influence has ignited significant and urgent debate across both societal and academic spheres. While algorithmic systems

are frequently lauded for their capacity to enhance the efficiency of information matching and significantly optimize the user experience, they concurrently introduce a host of critical societal and individual risks. The very mechanisms that create seamless personalization can also foster detrimental phenomena such as the formation of insulated "echo chambers," the reinforcement and amplification of cognitive biases, and the systemic potential for widespread privacy infringements. This inherent dichotomy presents a complex challenge. Consequently, a comprehensive and critical analysis of the dual impact of social media algorithms on consumer behavior has become an academic and practical imperative. A deeper understanding of this complex interplay is essential for fostering a healthier digital ecosystem. This paper, therefore, aims to systematically deconstruct the key technical characteristics of social media algorithms and elucidate their mechanisms of action on consumer psychology. It will critically assess both the positive and negative consequences for consumer behavior, culminating in the proposal of holistic optimization strategies from the dual perspectives of the platform and the consumer.

2. Technical features of algorithms and consumer psychology

The algorithms used on social media are complex systems that can significantly influence consumers in their psychology and decision-making processes. Key technical features such as recommendation logic, transparency, and accuracy are the primary factors that cause psychological effects like trust, fairness perception, and satisfaction.

First, the type of recommendation algorithm directly shapes the user's first impressions. Different types use different psychological theories. An important study by Groh and Ehmig compared two main recommendation mechanisms: traditional Collaborative Filtering and social network-based Social Filtering. In taste-related domains like club ratings, the study found that the prediction accuracy of Social Filtering was much better than that of Collaborative Filtering [1]. However, traditional Collaborative Filtering is like a "black box". The user cannot know its logic, making it difficult to build trust. This example shows an important technical feature of algorithms: if the source of the recommendation can be explained, it is easier to cause positive psychological effects. When the source is from a trustworthy friend, it is more likely to cause positive psychological effects.

Second, to study the technical features of algorithms, need to break down the concept of algorithms. From focus group research, Diakopoulos and Koliska created a complete framework for algorithmic transparency that is a useful tool for examining its technical features. The framework breaks down a complete algorithmic system into four layers where information can be shared: Data, Model, Inference, and Interface [2]. For example, transparency at the "Model" layer could include sharing the input variables, feature weightings, and model type used by the algorithm [2]. This framework is valuable because it makes the macroscopic concept of an algorithm, divided into the technical parts that can be studied specifically. This makes researchers discuss specific technical features, such as how the weights of display models influence the psychology of users.

Third, a large body of research has tested the relationship between these technical features and user behavior and psychology. Shin built and tested a user experience model for a news recommender system that explained the role of two key technical features: transparency and accuracy [3]. The study found that users' own views of transparency and accuracy are the starting point of their thinking process. These views first affect the user's confirmation of the recommendation. This then affects how useful and convenient they think the system is. In the end, this decides their satisfaction and whether they will continue to use it [3]. Importantly, the research has confirmed that trust plays a key role during this process. It can adjust the influence of

satisfaction on the aspirations of continuing to use the system [3]. This shows the advantage of an algorithm's technical features, such as accuracy, which not only makes users stay but also makes them trust the system in a psychological sense.

Lastly, newer research has used the underlying theory of psychology to reveal the cause of transparency affecting trust in psychology. Guo and Zhang introduced the Fairness Heuristic Theory from organizational management. The study developed a model and found that algorithmic transparency does not directly affect user trust. Instead, it affects trust indirectly by making users feel that the algorithm is fairer [4].

When information is not the same, users are more likely to use the transparency of a platform to decide whether it is fair. When a platform is very transparent, users tend to believe that its algorithm is fair. This feeling of fairness becomes the foundation of trust [5]. The study also found that algorithm literacy has a positive effect. When users know more about algorithms, the influence of transparency on the perception of fairness becomes more significant [5]. This finding provides a much deeper understanding of how the technical feature of transparency turns into a user's psychological state.

3. Positive and negative impacts on consumer behavior

Social media algorithms' impact on user choice is not one-way but rather has a dualistic nature—both positive and negative.

3.1. Positive impacts

On the positive side, algorithmic operations largely influence user behavior in three main ways: significantly reducing decision costs while enhancing matching efficiency, effectively causing consumption variety, and guiding prosocial behaviors that produce positive social outcomes. Big data algorithms can infer users' preferences, thereby enhancing the accuracy of the personalized information pushed to users. Before the advent of big data analysis, people could only obtain information through fixed channels that published fixed content, or by mechanically searching for information using keywords from more primitive networks. There is a certain degree of difficulty in finding the appropriate information, and the content to be searched depends on one's subjective initiative. When users have no intention of actively engaging with real-time messages, they will be subject to the negative effects brought about by the information gap. Therefore, the network big data can calculate the subjective and objective demands of users without being restricted by their active exploration. It directly provides users with valuable information based on their objective conditions, and to a certain extent, avoids the time cost for users to search for valuable information from the information that is of no value to them. According to the data research on efficiency and cognitive level impact on users by Allcott et al., users who spend about one hour per day browsing Facebook have significantly higher accuracy rates in tests of news and other knowledge compared to non-users [6]. Under the algorithm mechanism, the efficiency of users' news exposure has increased by 37% compared to traditional media users, and the cost of information acquisition has decreased by 62%. In stark contrast, when the subjects stopped following the experimental standard to receive newspush through the algorithm, their news knowledge levels showed a stepwise decline pattern. More than half of the subjects no longer sought professional and effective news sources voluntarily after having to abandon the support of the data algorithm, that is, the alternative to the algorithm support. Apart from the gain in information accessibility, the algorithm's role in decision-making and commodity transactions is also obvious. Due to the existence of big data algorithms, the efficiency

of users making decisions or matching with suitable products has been improved. This improvement in efficiency contributes to enhancing the overall economic efficiency of society. In the experiments conducted by Lambrecht and Tucker, the subjects who received algorithmic services made fewer decisions compared to the control group without algorithm assistance [5]. Under the screening of big data, users' satisfaction with the decisions also increased, while the abandonment rate and regret rate decreased by 19% and 14% respectively. In the field of commodity transactions, the sales volume of niche products increased by 34%, and the efficiency and accuracy of matching also improved significantly. This improvement provided better trading opportunities for products with a narrow market range.

3.2. Negative impacts

Meanwhile, the negative impact of social media algorithms on consumer behavior is also obvious, and it mainly focuses on the narrowing of cognitive, the distortion of information exposure and the infringement of private rights. The most significant negative impact of the most classic big data algorithms is the narrowing of cognition caused by information cocoons. As the algorithm continuously tailor's information recommendations for users, users gradually become confined within an information prison by the algorithm's continuous filtering of information that they are not interested in. They continuously and solely receive the information they like, and subconsciously are influenced in their way of perceiving things, and their thinking becomes rigid. The process of these information cocoons continuously solidifying poses the risk of leading users towards paranoia. The widespread use of algorithms will further expand the possibility and scope of this risk, such that everyone who encounters the network will unconsciously or consciously fall into the cocoon and be polarized due to the monotonous reception of information, thereby changing the way they perceive the world. The distortion of cognition caused by the cocoon becomes dangerous because people continuously reinforce their positions through the repeated indoctrination process of the cocoon, lose critical thinking, and naturally develop hostility towards opposing opinions. Andersson & de Vries conducted a study and presented comparative data, showing that users who continuously used personalized recommendations experienced a 42% decrease in the diversity of their information exposure, while the rate of political polarization increased by more than twice [7]. However, Garimella et al. pointed out that Twitter's algorithm reduced the opportunity for users to encounter opposing viewpoints from 15% to 6% [8]. After slightly increasing cross-stance recommendations through manual intervention, the quality of users' conversations improved by more than 30%. Privacy infringement and algorithm manipulation are also significant risks associated with big data algorithms. Many apps and enterprises do not clearly and explicitly list the specific usage terms of the algorithms on their pages. Instead, they make the terms difficult to read, thereby creating concealment and deception for users. Mathur et al. found that 87% of e-commerce apps secretly expand the scope of information collection through "default selection", while the actual awareness rate of users is less than 12% [9]. This behavior infringes upon consumers' right to know and privacy rights, and consumers usually are not aware that their rights have been violated.

4. Optimization strategies

To address social media's algorithm recommendation, the resulting information silos and user decision fatigue issues, this article advocates two ways to build a health information ecosystem: Platform technology optimization and improvement of consumer media literacy.

4.1. From the technical perspective

Algorithms design is needed to transition from the singular focus on interest-matching to the way that more transparent and human-centric method, which is the via of the overcome for filter bubbles. The app's design is too focused on user feedback and interest matching, which easily leads to content loops and information isolation [10,11].

Using explainable recommendations, algorithms is able to show the recommendation basis to the consumer, increase consumer understanding of arithmetic and trust, and decrease algorithmic fatigue from repeated content [12].

Instead of using explainable recommendation mechanism to increase transparency and trustworthiness, it is also necessary to have a mechanism that can monitor and respond to user status in real time. Create a user fatigue recognition system at heck user behavior characteristics in real time (such as sliding speed and interaction rate decline) to determine whether the user is fatigued or not, dynamically reduce the push frequency, introduce new stuff, and increase algorithms for cognitive states and emotion pressure's responsiveness [13].

4.2. From the consumer perspective

Although the platform has optimization capabilities, users' media literacy and ability to process information are still key to addressing algorithms' negative impact.

Strengthen media literacy and algorithm literacy education, popularize science and technology activities. That increase app user knowledge of recommendation mechanisms, basic understanding of data privacy protection, algorithmic bias, etc., and increase users' knowledge of recommended misconceptions. In actual research, a significant correlation exists between higher social media literacy and lower feelings of information overload [14].

5. Conclusion

Social media algorithms have fundamentally reshaped consumer behavior through their dual capacity to enhance efficiency while creating risks. These systems optimize decision-making processes by reducing information search costs and improving content relevance. Such measurable gains demonstrate algorithms' ability to simplified choices and boost economic productivity while minimizing user regret and abandonment rates. However, these benefits are offset by concerns including the formation of information cocoons and amplify societal polarization through selective content filtration. The algorithms' bias toward reinforcing existing preferences creates self-reinforcing chambers that gradually erode critical thinking capacities. Privacy violations further compound these issues.

Overcoming these issues involves a response, wherein platforms implement technological interventions such as explainable recommendation engines and diversity-weighted algorithms, alongside real-time detection mechanisms for user fatigue. Meanwhile, users must acquire algorithmic literacy in surfing these systems critically while adopting proactive consumption information strategies. Institutional support in the form of digital wellness education and systematic disconnection procedures can help preserve cognitive equilibrium. The responsible innovation of social media algorithms requires continuous partnership between technological advancement and efforts towards user permissions.

Longitudinal assessment of algorithmic literacy interventions and platform interventions should be the target of future research to identify whether such systems reinforce a fair digital public

Proceedings of ICFTBA 2025 Symposium: Strategic Human Capital Management in the Era of AI DOI: 10.54254/2754-1169/2025.LD28881

sphere. Only by employing such balanced strategies can the advantages of algorithmic personalization be shifted to the best benefit of society, without compromising cognitive diversity and underlying democratic principles, thereby unlocking the full potential of the technology while preserving individual freedom and social welfare.

Authors Contribution

All the authors contributed equally and their names were listed in alphabetical order.

References

- [1] Groh, G., & Ehmig, C. (2007, November). Recommendations in taste related domains: collaborative filtering vs. social filtering. In Proceedings of the 2007 ACM international conference on supporting group Work (pp. 127-136).
- [2] Diakopoulos, N., & Koliska, M. (2017). Algorithmic transparency in the news media. Digital journalism, 5(7), 809-828.
- [3] Shin, D. (2020). How do users interact with algorithm recommender systems? The interaction of users, algorithms, and performance. Computers in human behavior, 109, 106344.
- [4] Guo, Y. X., & Zhang, X. (2025). The Impact Mechanism of Algorithmic Transparency on User Trust in Intelligent Recommendation Systems of Internet Platforms. Journal of Computers, 36(3), 335-348.
- [5] Lambrecht, A. & Tucker, C. (2021). The Impact of Recommender Systems on Consumer Decision-Making. Journal of Marketing Research, 58(3), 447-468.
- [6] Allcott, H., Braghieri, L., Eichmeyer, S., & Gentzkow, M. (2020). The welfare effects of social media. American economic review, 110(3), 629-676.
- [7] Andersson, S. and de Vries, P. (2023). The filter bubble: how algorithms limit cognitive diversity. Nature Human Behaviour, 7(5), 682-694.
- [8] Garimella, K. et al. (2022). Echo chambers in social media. Proceedings of the ACM Web Science Conference (WebSci), 1-10.
- [9] Mathur, A. et al. (2023). Dark patterns in personalization. Proceedings of the ACM on Human-Computer Interaction, 7(CSCW), 1-25.
- [10] Zhao, Y., Wang, Y., Liu, Y., Cheng, X., Aggarwal, C., & Derr, T. (2023). Feedback Loop and Bias Amplification in Recommender Systems: A Survey. arXiv.
- [11] Yang, X., Wu, X., & Zhang, L. (2025). An Exploratory Study on Information Cocoon in Recommender Systems. Frontiers of Computer Science.
- [12] Sonboli, N., Smith, J. J., Cabral Berenfus, F., Burke, R., & Fiesler, C. (2021, June). Fairness and transparency in recommendation: The users' perspective. In Proceedings of the 29th ACM Conference on User Modeling, Adaptation and Personalization (pp. 274-279).
- [13] Romero-Meza, R., & D'Urso, V. (2024). Choice overload and user fatigue in recommender systems: Behavioral evidence and mitigation strategies. Journal of Behavioral Decision Making.
- [14] Ahmed, S., & Rasul, M. (2023). Examining the association between social media fatigue, cognitive ability, narcissism, and misinformation sharing. Scientific Reports, 13, 15416.