References
[1]. Zhang, Z., Zohren, S., & Roberts, S. (2019). Deep reinforcement learning for trading. arXiv preprint arXiv: 1911.10107.
[2]. Liu, X. Y., Xiong, Z., Zhong, S., Yang, H., & Walid, A. (2018). Practical deep reinforcement learning approach for stock trading. arXiv preprint arXiv: 1811.07522.
[3]. Yasin, A. S., & Gill, P. S. (2024). Reinforcement Learning Framework for Quantitative Trading. arXiv preprint arXiv: 2411.07585.
[4]. M. E. Aloud and N. Alkhamees, 2021. “Intelligent Algorithmic Trading Strategy Using Reinforcement Learning and Directional Change, ” IEEE Access, vol. 9, pp. 114659–114671. doi: 10.1109/ACCESS.2021.3105259.
[5]. F. Liu, Y. Li, B. Li, J. Li, and H. Xie, 2021. “Bitcoin transaction strategy construction based on deep reinforcement learning, ” Appl Soft Comput, vol. 113, Dec, doi: 10.1016/j.asoc.2021.107952.
[6]. Ding, Y., Yuan, G., Zuo, D., & Gao, T. (2025). Hedging with Sparse Reward Reinforcement Learning. arXiv preprint arXiv: 2503.04218.
[7]. F. Li, Z. Wang, and P. Zhou, 2022. “Ensemble Investment Strategies Based on Reinforcement Learning, ” Sci Program, vol. 2022, doi: 10.1155/2022/7648810.
[8]. Ye, A., Xu, J., Veedgav, V., Wang, Y., Yu, Y., Yan, D., ... & Xu, S. (2024). Learning the Market: Sentiment-Based Ensemble Trading Agents. arXiv preprint arXiv: 2402.01441.
[9]. Sarani, D., & Rashidi-Khazaee, P. (2024). A Deep Reinforcement Learning Approach for Trading Optimization in the Forex Market with Multi-Agent Asynchronous Distribution. arXiv preprint arXiv: 2405.19982.
[10]. Qiu, D., Wang, J., Wang, J., & Strbac, G. (2021, August). Multi-Agent Reinforcement Learning for Automated Peer-to-Peer Energy Trading in Double-Side Auction Market. In IJCAI (pp. 2913-2920).