
Proceedings	of	ICFTBA	2025	Symposium:	Financial	Framework's	Role	in	Economics	and	Management	of	Human-Centered	Development
DOI:	10.54254/2754-1169/2025.GL25764

©	2025	The	Authors.	This	is	an	open	access	article	distributed	under	the	terms	of	the	Creative	Commons	Attribution	License	4.0
(https://creativecommons.org/licenses/by/4.0/).

8

How Do Reinforcement Learning Algorithms Optimize
Trading Strategies in Financial Markets Compared to
Traditional Trading Approaches? A Literature Review

Liu Hong Yuan Tom

Faculty of Engineering, The University of Hong Kong, Hong Kong, China
liutom@connect.hku.hk

Abstract: Reinforcement learning (RL) has demonstrated significant potential in optimizing
sequential decision-making within financial markets' highly dynamic and uncertain
environments, offering distinct advantages over traditional trading approaches. This
literature review investigates the use of RL in developing and improving trading strategies
by integrating the findings of ten recent studies published between 2018 and 2025, selected
for their focus on RL applications in different financial domains. These studies employ a
range of RL techniques, such as Q-learning, and Proximal Policy Optimization (PPO),
across a variety of financial markets, including stocks, Forex, Bitcoin, and derivatives. The
review shows that RL-based strategies, which often use innovations such as multi-agent
systems, ensemble learning, and sentiment analysis, demonstrate superiority such as better
adaptability to non-dynamic stationary market conditions, enhanced risk-adjusted returns,
and capability to learn complex relationships directly from market data, thus outperforming
conventional methods and market benchmarks. Challenges hindering the practical
application of reinforcement learning in trading include sample efficiency, training stability,
market complexity, and the necessity for accurate market assumptions. These are areas
requiring further examination and enhancement.

Keywords: Reinforcement Learning, Trading Strategies, Machine Learning, Optimization

1. Introduction

Financial markets exhibit inherent dynamism characterized by volatility and uncertainty, creating
challenges for conventional trading strategies. These methods rely on static models and linear
assumptions, often failing to capture evolving market patterns in ever-evolving, non-stationary
market conditions [1]. Conventional approaches can struggle to quickly adapt to the market changes.
Since they are defined with rules, they may become suboptimal or detrimental when used in unseen
scenarios. Additionally, many traditional algorithms need manual calibration, making them less
effective in real-time trading environments. In this context, a more adaptive and robust approach is
needed to improve the optimization of trading decisions. As a machine learning paradigm,
reinforcement learning (RL) demonstrates unique potential in complex environments.
Reinforcement learning frameworks formalize trading as a sequential decision-making process

Proceedings	of	ICFTBA	2025	Symposium:	Financial	Framework's	Role	in	Economics	and	Management	of	Human-Centered	Development
DOI:	10.54254/2754-1169/2025.GL25764

9

where an agent learns to find the optimal actions (e.g., buy, sell, hold) by receiving rewards or
penalties through interactions with the environment [2, 3]. The purpose of this literature review is to
explore the application of RL in developing and optimizing financial trading strategies. This review
synthesizes findings from multiple studies (2018-2025) on RL implementations and evaluation of
RL algorithms; this includes Q-learning, PPO, and ensemble methods that are applied to various
markets such as Forex, and Bitcoin. Through identifying innovative approaches and challenges, this
review provides a foundation for future work and application of RL in the financial field.

2. Reinforcement learning for trading

2.1. Reinforcement learning framework for trading

Reinforcement learning formalizes trading problems as a Markov Decision Process (MDP), where
the RL agent interacts with the market environment at discrete time steps. At each step, the agent
takes in the current market state, then takes an action (e.g., buy, sell, or hold), and receives a
numerical reward/penalty reflecting action outcomes [1, 2]. The goal of the agent is to maximize the
cumulative expected reward by learning the optimal policy that maps states to actions.

One of the most important aspects of this framework is the state representation. An effective state
representation must capture sufficient information about the market to allow well-informed
decision-making. Researchers have utilized many different techniques, such as using historical price
data (open, close, high, low, and volume per security) and a spectrum of technical indicators [1, 3].
A practical example is a trading agent whose state is defined by the last 60 observations of pricing
data, augmented with technical indicators including Moving Average Convergence Divergence
(MACD) and the Relative Strength Index (RSI) [1]. The advantage of this over traditional methods
is high responsiveness to recent price changes; however, the disadvantage is false signals may
induce decision noise, potentially exacerbating over-trading, which may lead to over-trading and the
accumulation of transaction costs [1, 3]. While this method is powerful, careful feature selection is
needed to better understand the potential market trends [3]. Another example involves using an
event-driven state representation. A trading agent could use the directional change (DC) event
approach, where the state only changes when the price moves by a predefined amount [4]. Other
methods, such as using LSTMs to automatically learn features from time series, provide an
alternative to explicit feature engineering [5].

The action space design—defining all executable agent actions—constitutes a critical component.
The choice of action space must be aligned with both the objective and the selected RL algorithm.
Generally, there are two types of action space: discrete action space or continuous action space.
Discrete spaces comprise finite unique actions (e.g., buy/sell/hold) for directional trading [4]. This is
suitable for problems where the agent only decides on the direction of a trade. Continuous action
spaces allow for more detailed decisions where actions are represented by real-valued numbers. This
is important for sophisticated takes such as portfolio optimization where the action may represent
the exact percentage or amount of capital to allocate to an asset [2]. Properly constrained action
spaces directly determine learnable strategies. The reward function is also equally important as it
guides the learning process of the agent and thereby must be carefully designed to match the trading
objective, such as maximizing profit, minimizing risk, or Sharpe ratio.

Proceedings	of	ICFTBA	2025	Symposium:	Financial	Framework's	Role	in	Economics	and	Management	of	Human-Centered	Development
DOI:	10.54254/2754-1169/2025.GL25764

10

2.2. Key reinforcement learning algorithms and adaptations

Diverse RL algorithms have been specifically adapted for financial trading. These algorithms have
been carefully chosen based on the specific nature of the trading task, such as the dimensionality of
the state and action spaces (discrete vs. continuous).

Q-learning is a model-free, off-policy RL algorithm that learns the optimal action-selection policy
through learning a Q-function. This function estimates the expected future cumulative reward by
taking an action in the state and then following the optimal policy afterward. The agent updates its
Q-values using the Bellman equation in each iteration until it converges. Q-learning allows the agent
to directly learn the expected rewards, making it conceptually straightforward. Additionally, as it is
an off-policy algorithm, it can learn from past experiences generated by different policies, allowing
improvement in sample efficiency. However, its reliance on Q-tables becomes computationally
prohibitive for high-dimensional spaces which can slow down the convergence and may not
generalize well to other data. Q-learning demonstrates optimal efficacy in discrete action domains.
Aloud and Alkhamees employed Q-learning to find the optimal trading rule with their DC event-
driven state representation. Their Q-table was updated based on the rewards from buy/sell actions,
allowing the agent to learn the optimal action for DC-defined market states [4].

Policy Gradient (PG) methods directly learn and optimize the policy function which maps states
to actions or a probability distribution over actions, parameterized by . Through the gradient
ascent method on an objective function which is typically the expected cumulative reward, the
algorithm adjusts the policy parameters . The main idea is to increase the probability of actions
that lead to higher rewards and decrease the probability of actions that lead to lower rewards. Their
advantage is flexibility as the algorithm optimizes the policy directly. However, its main
disadvantage is high variance may happen during training, which may lead to instability and
convergence to suboptimal policies. PG methods are suitable for a wide range of problems, such as
requiring continuous action space or portfolio allocation. Zhang et al. uses PG for trading future
contracts. They aimed to maximize cumulative rewards by directly optimizing the policy which is
represented by a neural network [1].

PPO is an advanced policy gradient algorithm known for its stability and sample efficiency. It
implements a clipping function that restrains the size of policy updates at each iteration which
prevents destructive large changes to the policy, on top of earlier policy gradient methods. This
modification ensures more stable training. Since PPO tries to keep the new policy close to the old
policy but still make progress, it effectively balances the exploration-exploitation trade-off. Liu et al.
utilized PPO to construct a Bitcoin trading strategy, with an LSTM network as the basis for the
policy function; they concluded that their PPO-based framework can generate a Bitcoin trading
strategy that is profitatble [5]. Ding et al. improved the PPO algorithm by incorporating -step
temporal difference errors to handle sparse rewards; they found out that this modification
significantly improves the hedging performance and the performance of the agent [6].

Actor-critic methods combine the advantages of both policy-based (Actor) and value-based
(Critic) approaches. The “Actor” part is responsible for learning and deciding which action to take,
and the “Critic” part is responsible for evaluating the action taken by the Actor by learning a value
function that estimates how well the state-action is. Then, the Actor’s policy parameters are updated
using the Critic’s feedback which will guide the algorithm to making better decisions. The main
advantage is having a better balance between bias and variance compared to pure PG algorithms or
value-based methods, which leads to more stable training. However, it can be more complex than
other simpler PG methods or Q-learning. This type of algorithm is best for both discrete or

θ

θ

n

Proceedings	of	ICFTBA	2025	Symposium:	Financial	Framework's	Role	in	Economics	and	Management	of	Human-Centered	Development
DOI:	10.54254/2754-1169/2025.GL25764

11

continuous action spaces in various markets. Several variations of AC methods, such as A2C, are
widely used.

Advantage Actor-Critic (A2C) uses an advantage function in the critic to evaluate how much
better or worse an action is compared to the average action from state . This reduces the policy
variance in policy gradient updates. Asynchronous Advantage Actor-Critic (A3C) introduced
asynchronicity on top of A2C which allows the training of multiple agents in parallel in the same
environment independently and updates a global set of parameters. Sarani and Rashidi-Khazaee
pioneered a multi-agent A3C framework for Forex trading and Li et al. and Ye et al. include A2C as
part of their ensemble model [7-9].

Deep Deterministic Policy Gradient (DDPG) is an actor-critic, model-free algorithm designed for
continuous action spaces. Instead of learning a probability distribution, it learns a deterministic
policy (the Actor) that maps states to specific continuous actions. The Critic learns an action-value
function similar to Q-learning. DDPG extends DQN to continuous action spaces; hence it is suitable
for tasks such as precise trade sizing or portfolio allocation. However, it is sensitive to
hyperparameters and convergence issues, especially with complex Q-function. Liu et al. used DDPG
to find the optimal stock trading strategies. Their work shows DDPG’s framework and the use of
target networks for stable training [2].

Soft Actor-Critic (SAC) is an off-policy actor-critic deep RL algorithm with the integration of
entropy. Besides maximizing the expected cumulative reward, maximizing the entropy of the policy
is one of the goals of SAC. This allows more exploration by ensuring more exploration of different
actions while still satisfying the task. This helps avoid suboptimal local optima and improves
robustness. Li et al. used SAC as one of the three algorithms in their ensemble strategy [7]. The
introduction of SAC in their ensemble strategy aimed to utilize its strong exploration capabilities
and stable learning.

Multi-Agent Deep Deterministic Policy Gradient (MADDPG) extends DDPG to multi-agent
environments. Each agent has its actor and critic. Each agent’s critic is trained with the observations
and actions of other agents, which allows learning a centralized Q-function. However, during
execution, each agent’s actor only uses the observation by the corresponding agent to select actions.
This method addresses the non-stationarity problem in multi-agent training where the environment
changes as the agents learn, thus being able to learn complex behaviors. However, since it requires
access to global stat-action information, it may not always be feasible, and scalability can be an
issue with an increasing number of agents. This algorithm suits tasks designed for scenes with
multiple interacting agents. Qiu et al. proposed DA-MADDPG, which is a modification of
MADDPG by abstracting the actions and observations of other agents through publicly available
DA (Double-Side Auction) market data for each agent’s critic [10]. These algorithms are frequently
adapted to the financial context not just their core mechanics but also the state representations,
action spaces, and reward functions. The choice of the algorithm is caused by the requirements for
the trading problem, such as whether the actions are discrete or continuous, the need for exploration,
and the market environment complexity.

3. Reinforcement learning algorithms vs. traditional methods

Liu et al. demonstrated that their DDPG-based stock trading algorithm achieved higher returns than
the Dow Jones Industrial Average (DJIA) and a traditional min-variance portfolio allocation strategy
[2]. For instance, in backtesting with an initial portfolio value of , their DDPG strategy
scored an annualized return of and a Sharpe ratio of , outperforming the min-variance strategy
which has an annualized return and Sharpe ratio, and DJIA which has an annualized return and

s

$10,000

1.79

Proceedings	of	ICFTBA	2025	Symposium:	Financial	Framework's	Role	in	Economics	and	Management	of	Human-Centered	Development
DOI:	10.54254/2754-1169/2025.GL25764

12

Sharpe ratio. Aloud and Alkhamees demonstrated that their DCRL (Directional Change
Reinforcement Learning) trading strategy achieved superior trading returns and enhanced Sharpe
ratios across various stock markets when compared to Zero-Intelligence (ZI) agents and traditional
DC methods, particularly with the incorporation of Q-learning [4].

Another advantage of RL algorithms is their adaptability. Unlike static rule-based strategies
requiring scenario-specific optimization for specific scenarios, RL agents learn by directly
interacting with the market condition [1, 4]. The agent’s policies are not fixed; they are constantly
updated based on the rewards or penalties they received for their actions in a market state. With
optimization algorithms, this process allows the agent to dynamically tweak their policies. This
allows the agent to explore other new actions and converge to the optimal policy. Since the RL agent
can adapt to different market environments without explicit reprogramming or modifying the
algorithm, endowing RL agents with non-stationarity robustness enables them to maintain the best
performance as the market changes. A common theme in the reviewed literature is that RL-based
trading strategies outperform traditional methods and market benchmarks. This is typically
measured by metrics such as high cumulative returns, improved risk-adjusted returns, and greater
adaptability to the ever-changing market conditions.

4. Addressing reinforcement learning challenges and innovation in trading

Despite their promises, applying the RL algorithm to financial markets can be challenging due to
market complexity, non-stationarity, noises, and the high dimensionality of data. However, ongoing
research is addressing these issues and developing innovative ideas.

Market complexity and non-stationary are the primary obstacles. Innovative solutions such as
multi-agent systems and ensemble strategies have been developed. Multi-agent systems decompose
decision-making by utilizing several specialized agents to focus on their corresponding aspect of the
market, thereby adapting to the collective behavior of other participants [9, 10]. Their
implementation involves specific coordination mechanisms or information-sharing protocols to deal
with non-stationarity induced by concurrently learning agents. Results show that these systems are
more robust than single-agent methods [9, 10]. Ensemble methods amalgamate the predictions or
policies of various trained reinforcement learning agents and consolidate their outputs or select the
most effective output according to established criteria. The variation is diminished by utilising the
capabilities of various algorithms, hence enhancing generalisation across market regimes [7, 8]. Qiu
et al. utilized a multi-agent RL (MARL) approach (DA-MADDPG) for peer-to-peer energy trading
where the agents learn to work together in a dynamic auction market [10]. Their experiment shows
that agents using this MARL method received more economic benefits compared to traditional
approaches and that DA-MADDPG outperformed other MARL algorithms and conventional
strategies such as Zero Intelligence by coordinating agents’ trading activities and scoring a better
balance between local demand and generation [10].

Effective feature extraction and state representation are also very important. Li et al. employed
Principal Component Analysis (PCA) to lower the dimensions of stock feature vectors [7]. Ding et
al. used a spatiotemporal attention-based Transformer for probabilistic financial time series
forecasting as an input to their hedging agent, capturing the complex nonlinear asset relationships
[6].

Sample efficiency and training stability are factors that cannot be ignored.
• Asynchronous Learning: The A3C algorithm used by Sarani and Rashidi-Khazaee improves

sample efficiency and contributes to training stability through asynchronous parallel learning [9].

Proceedings	of	ICFTBA	2025	Symposium:	Financial	Framework's	Role	in	Economics	and	Management	of	Human-Centered	Development
DOI:	10.54254/2754-1169/2025.GL25764

13

• Experience Replay and Target Networks: Algorithms like DDPG, used by Liu et al. and Ye et
al., used experience replay and target networks to remove the correlation between samples and
provide a stable target, thus improving training stability [2, 8].

• Careful Reward Engineering: Issues like sparse rewards can impact stability. Ding et al.
addressed the issue of sparse rewards in derivative hedging by using Behavior Cloning with
Recurrent PPO (BC-RPPO) and -returns to transmit reward signals more effectively [6].

• Centralized Critic in MARL: Qiu et al. proposed an extension of MADDPG that learns a
centralized critic for each agent to stabilize multi-agent learning [10].

Further innovations include the integration of RL and known financial concepts. Ding et al.
integrate RL with probabilistic forecasting and risk-neutral pricing concepts for derivatives hedging
[6]. The challenge of unrealistic assumptions (e.g., no transaction cost, perfect liquidity) is often
acknowledged, with some studies such as Zhang et al. explicitly mentioning that transaction costs
are incorporated into their reward functions to train more realistically [1].

5. Conclusion

The findings demonstrate that RL algorithms offer significant advantages over conventional trading
approaches. RL agents demonstrate superior adaptability in non-stationary markets, and algorithms
such as Q-learning, PPO, DDPG, and A2C enable them to learn complex policies that often yield
higher returns. Many innovations such as multi-agents, dynamic ensemble strategies incorporating
sentiment analysis, and the integration of RL with financial models such as probabilistic forecasting
are pushing the boundaries of automated trading. Despite these successes, the research also
highlights several challenges and limitations. The complexity of financial markets means that RL
models can be difficult to train, which may demand high-dimensional data and intensive
computation. Additionally, ensuring training stability and achieving robust generalization across
different markets remain the main obstacles. The design of suitable state representations, action
spaces, and more importantly, reward functions that reflect the training objectives is critical. Future
research should focus on enhancing the robustness and reliability of RL trading agents. This includes
developing more sample-efficient algorithms, improving transfer learning capabilities across
different market conditions, and creating more sophisticated frameworks within RL policies. Hybrid
applications such as combining RL with other AI techniques (like NLP for sentiment analysis) or
traditional financial modeling, may yield further improvements. Addressing issues of interpretability
and making sure that RL strategies align with the requirements will also be important for wider
adoption.

References

[1] Zhang, Z., Zohren, S., & Roberts, S. (2019). Deep reinforcement learning for trading. arXiv preprint arXiv:
1911.10107.

[2] Liu, X. Y., Xiong, Z., Zhong, S., Yang, H., & Walid, A. (2018). Practical deep reinforcement learning approach for
stock trading. arXiv preprint arXiv: 1811.07522.

[3] Yasin, A. S., & Gill, P. S. (2024). Reinforcement Learning Framework for Quantitative Trading. arXiv preprint
arXiv: 2411.07585.

[4] M. E. Aloud and N. Alkhamees, 2021. “Intelligent Algorithmic Trading Strategy Using Reinforcement Learning
and Directional Change, ” IEEE Access, vol. 9, pp. 114659–114671. doi: 10.1109/ACCESS.2021.3105259.

[5] F. Liu, Y. Li, B. Li, J. Li, and H. Xie, 2021. “Bitcoin transaction strategy construction based on deep reinforcement
learning, ” Appl Soft Comput, vol. 113, Dec, doi: 10.1016/j.asoc.2021.107952.

[6] Ding, Y., Yuan, G., Zuo, D., & Gao, T. (2025). Hedging with Sparse Reward Reinforcement Learning. arXiv
preprint arXiv: 2503.04218.

λ

Proceedings	of	ICFTBA	2025	Symposium:	Financial	Framework's	Role	in	Economics	and	Management	of	Human-Centered	Development
DOI:	10.54254/2754-1169/2025.GL25764

14

[7] F. Li, Z. Wang, and P. Zhou, 2022. “Ensemble Investment Strategies Based on Reinforcement Learning, ” Sci
Program, vol. 2022, doi: 10.1155/2022/7648810.

[8] Ye, A., Xu, J., Veedgav, V., Wang, Y., Yu, Y., Yan, D., ... & Xu, S. (2024). Learning the Market: Sentiment-Based
Ensemble Trading Agents. arXiv preprint arXiv: 2402.01441.

[9] Sarani, D., & Rashidi-Khazaee, P. (2024). A Deep Reinforcement Learning Approach for Trading Optimization in
the Forex Market with Multi-Agent Asynchronous Distribution. arXiv preprint arXiv: 2405.19982.

[10] Qiu, D., Wang, J., Wang, J., & Strbac, G. (2021, August). Multi-Agent Reinforcement Learning for Automated
Peer-to-Peer Energy Trading in Double-Side Auction Market. In IJCAI (pp. 2913-2920).

