References
[1]. Guille, A., & Hacid, H. (2012). A predictive model for the temporal dynamics of information diffusion in online social networks. WWW 2012 – MŚND’12 Workshop, 1145-1152.
[2]. Rotabi, R., & Kleinberg, J. (2016). The Status Gradient of Trends in Social Media. arXiv.Org.
[3]. Stai, E., Milaiou, E., Karyotis, V., & Papavassiliou, S. (2018). Temporal dynamics of information diffusion in Twitter: Modeling and experimentation. IEEE Transactions on Computational Social Systems, 5(1), 256-264. https: //doi.org/10.1109/TCSS.2017.2784184
[4]. Imamori, D., & Tajima, K. (2016). Predicting Popularity of Twitter Accounts through the Discovery of Link-Propagating Early Adopters. Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, 24-28-, 639–648. https: //doi.org/10.1145/2983323.2983859
[5]. Choi, J., Yoon, J., Chung, J., Coh, B.-Y., & Lee, J.-M. (2020). Social media analytics and business intelligence research: A systematic review. Information Processing and Management, 57(3), 102279. https: //doi.org/10.1016/j.ipm.2020.102279
[6]. Trappey et al. (2018). Consumer driven product technology function deployment using social media and patent mining. Advanced Engineering Informatics 36, 120–129.
[7]. Li, C.-T., Lin, Y.-J., & Yeh, M.-Y. (2018). Forecasting participants of information diffusion on social networks with its applications. Information Sciences, 422, 432–446. https: //doi.org/10.1016/j.ins.2017.09.034
[8]. Wang et al. (2018). Topic analysis of online reviews for two competitive products using latent Dirichlet allocation. Electronic Commerce Research and Applications 29, 142–156.
[9]. Ho, T. K., Yoon, S., & Lee, J. (2021). FinBERT-GRU: A deep learning approach for stock price prediction using social media sentiment and time-series data. Expert Systems with Applications, 184, 115537. https: //doi.org/10.1016/j.eswa.2021.115537.
[10]. Cadwalladr, C., & Graham-Harrison, E. (2018). Revealed: 50 million Facebook profiles harvested for Cambridge Analytica. The Guardian.
[11]. Abadi, M., et al. (2016). Deep Learning with Differential Privacy. ACM CCS.
[12]. Lasmi, H., Lee, C. H., & Ceran, Y. (2021). Popularity Brings Better Sales or Vice Versa: Evidence from Instagram and OpenTable. Global Business Review. https: //doi.org/10.1177/09721509211044302
[13]. Mehrabi, N., et al. (2021). A Survey on Bias and Fairness in Machine Learning. ACM Computing Surveys.