An Adaptive Importance Sampling Approach for Variance Reduction in Jump-Diffusion CVA Calculations
Research Article
Open Access
CC BY

An Adaptive Importance Sampling Approach for Variance Reduction in Jump-Diffusion CVA Calculations

Yutong Huang 1*
1 Rutgers University
*Corresponding author: moon225@gmail.com
Published on 24 September 2025
Journal Cover
ACE Vol.186
ISSN (Print): 2755-273X
ISSN (Online): 2755-2721
ISBN (Print): 978-1-80590-383-3
ISBN (Online): 978-1-80590-384-0
Download Cover

Abstract

Credit Valuation Adjustment computation encounters substantial computational challenges under jump-diffusion asset dynamics, particularly regarding convergence rates in Monte Carlo simulations. Traditional sampling methods require excessive simulation paths for acceptable confidence intervals, creating operational bottlenecks in real-time risk management systems. This research develops an adaptive importance sampling framework specifically designed for high-dimensional jump-diffusion processes in CVA calculations. The methodology dynamically adjusts sampling densities to account for jump risk while maintaining unbiased estimation properties. A self-adaptive algorithm identifies and oversamples critical paths contributing disproportionately to CVA variance. Experimental results demonstrate variance reduction ratios exceeding 85% compared to standard Monte Carlo methods, with computational efficiency improvements of approximately 400% for portfolios containing European and barrier options under Merton jump-diffusion dynamics. The framework achieves significant variance reduction without sacrificing numerical accuracy, enabling faster risk reporting and more responsive counterparty risk management.

Keywords:

Credit Valuation Adjustment, Importance Sampling, Variance Reduction, Jump-Diffusion Process

View PDF
Huang,Y. (2025). An Adaptive Importance Sampling Approach for Variance Reduction in Jump-Diffusion CVA Calculations. Applied and Computational Engineering,186,59-70.

References

[1]. Gonçalves, F. B., Łatuszyński, K., & Roberts, G. O. Exact Monte Carlo likelihood-based inference for jump-diffusion processes. Journal of the Royal Statistical Society Series B: Statistical Methodology, 85(3), 732-756.

[2]. Deo, A., & Murthy, K. Efficient black-box importance sampling for VaR and CVaR estimation. In 2021 Winter Simulation Conference (WSC) (pp. 1-12). IEEE.

[3]. Xing, Y., Sit, T., & Ying Wong, H. (2022). Variance reduction for risk measures with importance sampling in nested simulation. Quantitative Finance, 22(4), 657-673.

[4]. Pham, T., & Gorodetsky, A. A. (2022). Ensemble approximate control variate estimators: Applications to multifidelity importance sampling. SIAM/ASA Journal on Uncertainty Quantification, 10(3), 1250-1292.

[5]. Castellano, R., Corallo, V., & Morelli, G. (2022). Structural estimation of counterparty credit risk under recovery risk. Journal of Banking & Finance, 140, 106512.

[6]. Kurniawan, H., Putri, E. R., Imron, C., & Prastyo, D. D. (2021, March). Monte Carlo method to valuate CAT bonds of flood in Surabaya under jump diffusion process. In Journal of Physics: Conference Series (Vol. 1821, No. 1, p. 012026). IOP Publishing.

[7]. Mies, F., Sadr, M., & Torrilhon, M. (2023). An efficient jump-diffusion approximation of the Boltzmann equation. Journal of Computational Physics, 490, 112308.

[8]. Hunt-Smith, N. T., Melnitchouk, W., Ringer, F., Sato, N., Thomas, A. W., & White, M. J. (2024). Accelerating Markov chain Monte Carlo sampling with diffusion models. Computer Physics Communications, 296, 109059.

[9]. Fantazzini, D. (2024). Adaptive Conformal Inference for Computing Market Risk Measures: An Analysis with Four Thousand Crypto-Assets. Journal of Risk and Financial Management, 17(6), 248.

[10]. Campbell, A., Harvey, W., Weilbach, C., De Bortoli, V., Rainforth, T., & Doucet, A. (2023). Trans-dimensional generative modeling via jump diffusion models. Advances in Neural Information Processing Systems, 36, 42217-42257.

[11]. Cong, W., Ramezani, M., & Mahdavi, M. (2021). On the Importance of Sampling in Training GCNs: Tighter Analysis and Variance Reduction. arXiv preprint arXiv: 2103.02696.

[12]. Pan, R., Liu, X., Diao, S., Pi, R., Zhang, J., Han, C., & Zhang, T. (2024). Lisa: Layerwise importance sampling for memory-efficient large language model fine-tuning. Advances in Neural Information Processing Systems, 37, 57018-57049.

[13]. You, C., Dai, W., Min, Y., Liu, F., Clifton, D., Zhou, S. K., ... & Duncan, J. (2023). Rethinking semi-supervised medical image segmentation: A variance-reduction perspective. Advances in neural information processing systems, 36, 9984-10021.

[14]. Dev, S., Wang, H., Nwosu, C. S., Jain, N., Veeravalli, B., & John, D. (2022). A predictive analytics approach for stroke prediction using machine learning and neural networks. Healthcare Analytics, 2, 100032.

[15]. Parati, G., Bilo, G., Kollias, A., Pengo, M., Ochoa, J. E., Castiglioni, P., ... & Zhang, Y. (2023). Blood pressure variability: methodological aspects, clinical relevance and practical indications for management-a European Society of Hypertension position paper∗. Journal of hypertension, 41(4), 527-544.

Cite this article

Huang,Y. (2025). An Adaptive Importance Sampling Approach for Variance Reduction in Jump-Diffusion CVA Calculations. Applied and Computational Engineering,186,59-70.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

About volume

Volume title: Proceedings of CONF-FMCE 2025 Symposium: Semantic Communication for Media Compression and Transmission

ISBN: 978-1-80590-383-3(Print) / 978-1-80590-384-0(Online)
Editor: Anil Fernando
Conference date: 24 October 2025
Series: Applied and Computational Engineering
Volume number: Vol.186
ISSN: 2755-2721(Print) / 2755-273X(Online)