Generative AI-Driven Optimization of Digital Value Chains for Intangible Heritage Music
Research Article
Open Access
CC BY

Generative AI-Driven Optimization of Digital Value Chains for Intangible Heritage Music

Xiaoyang Yu 1*
1 Tianjin Conservatory of Music, Tianjin, China
*Corresponding author: 13336224967@163.com
Published on 13 August 2025
Volume Cover
ACE Vol.176
ISSN (Print): 2755-273X
ISSN (Online): 2755-2721
ISBN (Print): 978-1-80590-239-3
ISBN (Online): 978-1-80590-240-9
Download Cover

Abstract

Safeguarding intangible heritage music increasingly depends on endtoend digital value chains that can faithfully model, generate, track, and remunerate culturally embedded musical knowledge. This paper proposes a generative AI framework that jointly (i) learns a multilayer, ethnomusicologyaware representation across raw audio, symbolic structure, and contextual metadata, (ii) constrains a controllable transformer–diffusion pipeline to preserve modality, microtonal tuning, ornamentation practice, and rhythmic grammar, and (iii) embeds blockchainanchored provenance and smartcontract royalty logic inside the creative pipeline. Using 1,842 recordings (126.3 hours) spanning Southeast Asian gamelan, Chinese Buddhist chant, and Andean panpipe repertoires, we compare our system against an archiveonly baseline and an unconditioned generative baseline. Conditioned generation reduces average modal deviation from canonical tunings from 12.3 ± 4.1 cents to 4.9 ± 1.8 cents, decreases rhythmic dynamictimewarping distance by 44.5%, and raises expert authenticity ratings from 3.12 ± 0.61 to 4.47 ± 0.28 (ICC(2,k)=0.82). On the valuechain layer, median royalty settlement time drops from 23.7 days to 1.92 days, the Theil inequality index falls from 0.218 to 0.071, and Jain’s fairness index rises from 0.63 to 0.89. Listenerside evaluation shows higher longtail coverage (+31.4%), improved NDCG@20 (0.382→0.497), and a 26% reduction in the hazard of early session abandonment. The findings demonstrate that culturally bounded, rightssensitive generative pipelines can simultaneously enhance preservation fidelity, creative reuse, and equitable community remuneration.

Keywords:

Intangible cultural heritage, generative AI, music informatics, digital value chain, blockchain provenance

View PDF
Yu,X. (2025). Generative AI-Driven Optimization of Digital Value Chains for Intangible Heritage Music. Applied and Computational Engineering,176,50-55.

References

[1]. Rashid, A., Rasheed, R., Ngah, A. H., Pradeepa Jayaratne, M. D. R., Rahi, S., & Tunio, M. N. (2024). Role of information processing and digital supply chain in supply chain resilience through supply chain risk management. Journal of Global Operations and Strategic Sourcing, 17(2), 429-447.

[2]. Mitra, R., & Zualkernan, I. (2025). Music generation using deep learning and generative AI: a systematic review. IEEE Access.

[3]. Yue, M., Xueyang, C., & Ziyun, Q. (2025). A conceptual framework for the path of digital preservation of intangible cultural heritage: A thematic review. Multidisciplinary Reviews, 8(2), 2025045-2025045.

[4]. Skublewska-Paszkowska, M., Milosz, M., Powroznik, P., & Lukasik, E. (2022). 3D technologies for intangible cultural heritage preservation—literature review for selected databases. Heritage Science, 10(1), 3.

[5]. Barnett, J., Garcia, H. F., & Pardo, B. (2024). Exploring musical roots: Applying audio embeddings to empower influence attribution for a generative music model.  arXiv preprint arXiv: 2401.14542.

[6]. Selmanović, E., Rizvic, S., Harvey, C., Boskovic, D., Hulusic, V., Chahin, M., & Sljivo, S. (2020). Improving accessibility to intangible cultural heritage preservation using virtual reality. Journal on Computing and Cultural Heritage (JOCCH), 13(2), 1-19.

[7]. Pandey, B. K., Kanike, U. K., George, A. S., & Pandey, D. (Eds.). (2024). AI and machine learning impacts in intelligent supply chain. IGI Global.

[8]. Kanhov, E., Kaila, A. K., & Sturm, B. L. (2024). Innovation, data colonialism and ethics: critical reflections on the impacts of AI on Irish traditional music. Journal of New Music Research, 53(1-2), 47-63.

[9]. Teng, Y., Du, A. M., & Lin, B. (2024). The mechanism of supply chain efficiency in enterprise digital transformation and total factor productivity. International review of financial analysis, 96, 103583.

[10]. Natraj, N. A., Abirami, T., Ananthi, K., Venice, J. A., Chandru, R., & Rathish, C. R. (2024). The Impact of 5G Technology on the Digital Supply Chain and Operations Management Landscape. In Applications of New Technology in Operations and Supply Chain Management (pp. 289-311). IGI Global.

Cite this article

Yu,X. (2025). Generative AI-Driven Optimization of Digital Value Chains for Intangible Heritage Music. Applied and Computational Engineering,176,50-55.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

About volume

Volume title: Proceedings of the 3rd International Conference on Machine Learning and Automation

ISBN: 978-1-80590-239-3(Print) / 978-1-80590-240-9(Online)
Editor: Hisham AbouGrad
Conference website: 978-1-80590-240-9
Conference date: 17 November 2025
Series: Applied and Computational Engineering
Volume number: Vol.176
ISSN: 2755-2721(Print) / 2755-273X(Online)