References
[1]. Deligani, R. J., Hosni, S. I., & Borgheai, S. B. (2021). Multimodal EEG and fNIRS brain signal integration for enhanced neural decoding: A systematic review and bibliometric analysis. IEEE Transactions on Neural Systems and Rehabilitation Engineering, *29*, 43–43. https: //doi.org/10.1109/TNSRE.2021.3089975
[2]. Taborri, J., Keogh, J., & Kos, A. (2020). Sport biomechanics applications using inertial, force, and EMG sensors: A literature review.Applied Bionics and Biomechanics,2020, Article 2041549. https: //doi.org/10.1155/2020/2041549
[3]. Waisberg, E. (2024). Meta smart glasses—large language models and the future for assistive glasses for individuals with vision impairments.Eye, 38, 1036–1038. https: //doi.org/10.1016/S0140-6736(24)00111-2
[4]. Chignoli, M., Kim, D., & Stanger-Jones, E. (2020). The MIT humanoid robot: Design, motion planning, and control for acrobatic behaviors. 2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids) (pp. 1–8). IEEE. https: //doi.org/10.1109/HUMANOIDS47582.2021.9555784
[5]. Fan, X. (2024). The communication pattern and industrial transformation in the era of mobile internet.China Media Technology, 3, 24–27.
[6]. Tao, L., Kui, Y., & Haibing, Z. (2008). Research status and development trend of Intelligent Wheelchair.Robot Technology and Application, 2, 1-5.
[7]. Han, S. (2008). Research on software adaptability oriented to mobility in ubiquitous computing [Doctoral dissertation, Shanghai Jiao Tong University].
[8]. Griffin, R. J. (2019). Footstep planning for autonomous walking over rough terrain. 2019 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids) (pp. 9–16). IEEE. https: //doi.org/10.1109/HUMANOIDS47582.2021.9555795
[9]. Bandara, H. M. R. T. (2020). An intelligent gesture classification model for domestic wheelchair navigation with gesture variance compensation.Applied Bionics and Biomechanics, 2020, Article 9160528. https: //doi.org/10.1155/2020/9160528
[10]. Zhang, X., Li, J., & Zhang, R. (2024). A brain-controlled and user-centered intelligent wheelchair.Sensors, 24(10), 3201. https: //doi.org/10.3390/s24103201
[11]. Wensing, P. M., & Orin, D. E. (2016). Improved computation of the humanoid centroidal dynamics and application for whole-body control.International Journal of Humanoid Robotics, 13(1), 1550039. https: //doi.org/10.1142/S0219843615500398
[12]. Featherstone, R. (2014). Rigid body dynamics algorithms. Springer.
[13]. Lee, S. H., & Goswami, A. (2007). Reaction mass pendulum (RMP): An explicit model for centroidal angular momentum of humanoid robots. Proceedings of the 2007 IEEE International Conference on Robotics and Automation (pp. 4667–4672). IEEE. https: //doi.org/10.1109/ROBOT.2007.364191
[14]. Gao, J., Li, P., & Chen, Z. (2020). A survey on deep learning for multimodal data fusion.Neural Computation, 32(5), 829–864. https: //doi.org/10.1162/neco_a_01273
[15]. Katz, B., Di Carlo, J., & Kim, S. (2019). Mini cheetah: A platform for pushing the limits of dynamic quadruped control. 2019 International Conference on Robotics and Automation (ICRA) (pp. 6295–6301). IEEE. https: //doi.org/10.1109/ICRA.2019.8793865
[16]. Kim, D., Jorgensen, S. J., & Stone, P. (2016). Dynamic behaviors on the NAO robot with closed-loop whole body operational space control. 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids) (pp. 1121–1128). IEEE. https: //doi.org/10.1109/HUMANOIDS.2016.7803393
[17]. Sun, Z. (2022). Research on point cloud mapping and relocalization of indoor mobile robots [Master’s thesis, Southwest Jiaotong University].
[18]. Luo, K. (2022). A multi-robot mapping construction algorithm based on ORB-SLAM3.Experimental Technology and Management, 39(6), 82–91.