References
[1]. Zhang, L.M., Dong, J.F., Bao, C.Z., et al.: Click-through Rate Prediction for Video Cold-start Problem. Journal of Software 33(12), 4838–4850 (2022).
[2]. Xie, M., Li, M.X., Wang, X.: Practice of Industrial-Grade Bandit Algorithm Product in Short-Video Cold-Start. Journal of Software 34(8), 3120–3135 (2023).
[3]. Wang, Y., Li, H., Zhang, C.: Adaptive Thompson sampling with dynamic priors for short-video recommendation. IEEE Transactions on Knowledge and Data Engineering 35(8), 7890–7903 (2023).
[4]. Chen, W., Zhu, L., Yin, H.: Reproducible evaluation framework for online bandit algorithms. Acta Automatica Sinica 48(9), 2015–2028 (2022).
[5]. Zhang, L., Wang, H., Chen, J.: Pre-trained embeddings for contextual bandit cold-start in short videos. Pattern Recognition and Artificial Intelligence 37(2), 132–145 (2024).
[6]. Li, X., Zhou, T.: Contextual bandit recommendation with dynamic feature weighting. IEEE Transactions on Neural Networks and Learning Systems 34(9), 5678–5690 (2023).
[7]. Agrawal, S., Goyal, N.: Near-optimal regret bounds for Thompson sampling in non-stationary bandits. Journal of Machine Learning Research 22(1), 11265–11311 (2021).
[8]. Abbasi-Yadkori, Y., Szepesvári, C.: Regret bounds for non-stationary bandit problems. Operations Research Transactions 25(3), 451–472 (2021).
[9]. Chen, L., Wang, H., Li, S.: Fairness-aware Thompson sampling for creator equity in short-video platforms. Journal of Computer Research and Development 60(7), 1568–1582 (2023).
[10]. Jaffe, S., Zhang, C.: A survey of bandit algorithms for real-time advertising. Computer Science 49(S1), 1–18 (2022).
[11]. Han, J., Kim, S.: Change-point detection for non-stationary bandit recommendation systems. Control and Decision 37(8), 1989–1996 (2022).
[12]. Luo, Y., Wang, F.: Bandit-based real-time recommendation for short-video platforms. Journal of Data Acquisition and Processing 38(4), 892–905 (2023).