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This study empirically compares three canonical Multi-Armed Bandit (MAB)
algorithms—Explore-Then-Commit (ETC), fixed initial exploration, Upper Confidence
Bound (UCBI), which is the optimism-driven uncertainty estimation, and Thompson
Sampling (TS) with Bernoulli likelihood (TS-Bernoulli, posterior-sampling-based)—for
short-video recommendation, aiming to solve the exploration-exploitation tradeoff in real-
time feed systems. Experiments were conducted on the ShortVideo-Interactions (SVI-200K)
dataset, a simulated corpus with ~1.2 million timestamped impressions and clicks from
240,000 user sessions over 30 days, covering ~18,000 unique items to mimic real platform
dynamics. Evaluations used a fixed horizon (T=2000 timesteps) and restricted candidates to
the top 200 items (K=200) per run, spanning three practical scenarios: stable base,
information-scarce cold-start (new items with no prior data), and preference-drifting
temporal-shift. Results, aggregated over three pseudo-random seeds (2025, 2026, 2027),
show TS-Bernoulli consistently outperforms peers: it achieves the highest Click-Through
Rate (CTR) (0.452 in base, 0.402 in cold-start, 0.428 in temporal-shift) and lowest
cumulative regret (418, 518, 467 respectively). These findings confirm that TS-Bernoulli’s
posterior sampling enables robust adaptation to short-video recommendation’s key
challenges (information scarcity and non-stationarity), providing a practical algorithm
choice for real-world platforms.

Multi-Armed Bandits, Thompson Sampling, Short-Video Recommendation,
Cold-Start, Cumulative Regret

Short-video feeds operate at millisecond latency, requiring real-time item selection per scroll to
maximize user engagement [1]. Reward feedback (click/no-click) is immediate yet extremely sparse
and volatile, demanding constant balance between exploration and exploitation [2]. MABs are well-
suited for this context, as they update from streaming feedback without heavy batch retraining [3].
This paper conducts a data-driven comparison of three classic bandit algorithms—ETC, UCBI,
and TS-Bernoulli—on the ShortVideo-Interactions (SVI-200K) dataset. The recommendation
problem is framed as Bernoulli reward maximization over K=200 candidate items across T=2000
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decisions, evaluated under three realistic scenarios: stable base, cold-start (limited prior
information), and temporal-shift (evolving preferences) [4]. Results aggregated over seeds {2025,
2026, 2027} show TS-Bernoulli’s consistent superiority: mean CTR/regret of 0.452/417.85 (base),
0.402/517.70 (cold-start), and 0.428/466.51 (temporal-shift). Relative to UCBI, this translates to
22.5%-37.2% CTR gains and 22.4%-29.6% regret reductions, with cold-start optimal-play fraction
rising from 0.38% to 1.5% (294.7% relative improvement) [5].

Contributions include: a lightweight, reproducible evaluation harness logging CTR, regret, and
optimal-play ratios; systematic scenario comparisons validating TS-Bernoulli’s dominance; and
released artifacts (csvs, plots) ensuring traceability [6].

The MAB problem has robust theoretical foundations, including asymptotic lower bounds and
efficient policies [7]. Optimism-in-uncertainty methods like UCB1 offer finite-time guarantees in
stationary settings but lack adaptability [8]. Thompson Sampling, a Bayesian approach sampling
from posterior beliefs, is simple to implement and competitive, with modern analyses clarifying its
regret properties [9,10]. ETC performs well in known stationary horizons but fails under shifts [11].

Bandit models are natural for recommender systems and online advertising with sparse feedback
[12]. Chapelle and Li (2011) demonstrated Thompson Sampling’s practicality in large-scale click-
feedback environments, with subsequent work exploring non-stationarity robustness via
discounting/sliding windows and contextual extensions. This study complements prior research by
quantifying classical non-contextual methods’ performance in short-video-specific scenarios.

Non-stationary bandit models address evolving reward distributions through sliding-window
UCB, discounted variants, or change-point detection. These are critical for short-video feeds where
user interests shift rapidly. Temporal-shift results align with findings that randomized posterior
sampling adapts faster than confidence-bound methods.

Contextual bandits leverage user/item features for personalization, improving cold-start
performance via informative priors. While this study focuses on non-contextual methods, its
findings form a baseline for contextual extensions—production systems often combine both for low-
latency personalization.

Operational concerns like creator fairness and safe exploration increasingly shape algorithm
choice. Large-scale deployments prioritize simplicity and traceability, with Beta-Bernoulli
Thompson Sampling offering favorable trade-offs if paired with drift handling and offline/online
agreement protocols.

This study formulates short-video recommendation as a non-contextual multi-armed bandit problem
with Bernoulli rewards, where user feedback is represented in binary form as either a click or no
click. The experimental setting involves a time horizon of two thousand steps. At each step, the
recommendation system selects one option from two hundred available arms, with each arm
corresponding to a unique short video in the SVI-200K dataset. After making a selection, the system
observes whether the user clicks on the recommended video, which is interpreted as a reward of one,
or does not click, which is treated as a reward of zero.
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Each video is associated with a predefined true click probability, specified in the SVI-200K
dataset. Among these two hundred videos, the optimal video is defined as the one with the highest
true click probability, which also represents the maximum achievable mean reward. The
recommendation system’s task is to learn these probabilities over the course of two thousand steps.
Ideally, the system should increasingly select the optimal video in order to approach the maximum
possible cumulative reward.

The overall objective is to maximize cumulative reward while minimizing regret, which arises
from choosing suboptimal videos. Achieving this objective requires a balance between exploration
and exploitation. Exploration refers to testing different videos to estimate their true click
probabilities, while exploitation emphasizes recommending videos that are already known to have
high click probabilities. In this work, the challenge of maintaining this balance is addressed by
evaluating three representative algorithms: ETC, UCBI1, and Thompson Sampling for Bernoulli
rewards.

ShortVideo - Interactions (SVI - 200K) is a dataset, a simulated one. Replicating real-world short-
video platform dynamics, it does this through a pipeline, a three-step pipeline. Grounding behavioral
distributions in anonymized platform logs, the simulation generates 18,000 unique items. With
realistic content categories, popularity distributions, and user session metrics, these are calibrated to
authentic engagement patterns. And item click probabilities, they integrate category appeal, user-
item affinity, and temporal decay. There are scenario-specific variations. These support three
evaluation conditions. Across 30 simulated days. The base scenario features 15 stable days. With
consistent CTRs, generating 620,000 impressions and 280,000 clicks. Then there's the cold start. It
injects 3,600 new items. With category-based initial CTRs, plus random noise. Creating 40,000
labeled cold-start sessions. And the temporal shift. It triggers preference changes. On Day 16, over
48 hours. With 180,000 transition impressions. Ensures dataset validity; there are ~1.2 million
timestamped impressions. Also, 540,000 clicks across 240,000 user sessions. Randomized
timestamps exist, too. And 3% accidental clicks. Validation shows<5% deviation from real platform
data in CTR distribution and engagement metrics.

The experimental setup restricts candidates to top K=200 items per run over T=2000 timesteps,
evaluating ETC, UCBI, and TS-Bernoulli algorithms across base, cold-start, and temporal-shift
scenarios using seeds {2025, 2026, 2027} with results aggregated across seeds. A single command
reproduces all experiments, with an orchestration runner executing scenarios and emitting per-seed
metrics and scenario-level figures. Outputs organize metrics by scenario and algorithm with
consolidated summary figures, companion files containing standard deviations for auditing, fixed
deterministic seeds with locked Python/NumPy generators, logged configurations, and computed
mean/standard deviation visualizations across seeds with optional per-seed plotting via command-
line flags.

Three classic non-contextual bandit algorithms are evaluated:
UCBI1 (optimism in the face of uncertainty). For arm (i) with (n_i(t)) pulls and empirical mean
with exploration constant (c=2.0) in the runs. With an exploration constant (c=2.0) in the runs.
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This study evaluates three classic non-contextual bandit algorithms under a unified experimental
setup. Each run involves two hundred candidate arms, a fixed horizon of two thousand timesteps,
and results averaged across three random seeds (2025, 2026, 2027). Scenario configurations,
including cold-start and temporal shift, are managed through the command-line interface.

The first algorithm, UCB1, applies the principle of optimism in the face of uncertainty with an
exploration constant set to 2.0. Every arm is pulled at least once at the beginning, and subsequent
selections are made according to an index that integrates both the empirical mean reward and the
degree of uncertainty derived from the number of times the arm has been chosen. The second
algorithm, TS-Bernoulli, initializes each arm’s Beta posterior with parameters alpha equal to one
and beta equal to one. At every timestep, rewards are sampled from all posteriors, the arm with the
highest sample is selected, and posterior parameters are updated by incrementing alpha after a click
or beta after a non-click. The third algorithm, ETC, employs uniform exploration for the first one
hundred timesteps—this parameter is configurable—and then commits to the arm with the highest
observed mean reward for the remainder of the two thousand steps.

In addition, a simplified cold-start scenario is designed to simulate uncertainty introduced by new
items. At initialization, thirty percent of the two hundred arms (sixty items) have pre-existing
interaction data to support reward initialization, while the remaining seventy percent (one hundred
forty items) are treated as entirely new. Further, new items are introduced dynamically at thirty
percent of the total horizon, corresponding to timestep six hundred under the default setting, or at a
minimum of timestep fifty when the horizon is shortened. Upon introduction, UCBI treats new
items with zero initial estimates, TS-Bernoulli initializes them with uniform priors (alpha equal to
one, beta equal to one), and ETC either includes them in the initial exploration phase if they arrive
before timestep one hundred or requires explicit initial pulls if they appear later.

To assess MAB algorithms for short-video recommendation, the system logs 5 core metrics (rewards
follow a Bernoulli distribution, mean reward = CTR) with scenario-level aggregates averaged over
seeds {2025, 2026, 2027}. Metrics, definitions, and formulas are as follows:
Instantaneous Bernoulli Reward (ry) : Real-time binary feedback at timestep t (1=user click,
0=no click), the foundational signal for derived metrics. No formula (discrete binary value).
Cumulative Reward (Rr) : Total clicks from timestep 1 to horizon T (quantifies total user
engagement).

Rr=Y{,r )

Where T = 2000 denotes the fixed horizon of recommendation timesteps per run, r; is the
instantaneous Bernoulli reward at step t, and R_T is the cumulative reward; an observed Rao00 = 850
therefore signifies 850 clicks were collected, so a larger R T implies a stronger ability to stimulate
user interactions.
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Cumulative Optimal Reward (R;) : Maximum possible total clicks (always selecting the

optimal arm with the highest true click probability p*) .

R; =Yan 3)

Where p* = max{,....n K} with K = 200 top candidate short-videos and p; is the dataset-
defined true click-through rate of the i-th video incorporating category, user-affinity, y, and temporal
decay, the optimal cumulative reward R; (e.g. n* = 0.42 yields Rao00* = 840) sets the performance
upper bound.

Regret (%) : Opportunity cost of suboptimal arm selection (gap between optimal and actual
cumulative reward).

%7 = Ry — Rr (4)

Where R:F is this optimum and R the algorithm’s actual cumulative reward, the regret %
(e.g., 840 — 720 = 120) quantifies the exploration—exploitation gap, so a lower Zr signals better
balancing, especially under cold-start or temporal-shift uncertainty.5. Optimal Arm Selection Ratio
(pr) : Proportion of timesteps selecting the optimal arm (reflects convergence to optimal
recommendation).

pr=1 X i, I<at = a*> (5)

Where a; is the arm selected at step t, a* the arm with mean reward p* , I(-) the indicator
function and T = 2000, the optimal-selection rate pr (e.g. 1 300 matches = p2o00 = 0.65) measures
how consistently the best-performing item is chosen, and a higher pr indicates more stable
exploitation in stationary-preference environments.

4. Results and analysis
4.1. Thompson sampling

Exploration strategy: Thompson Sampling’s randomized exploration. It efficiently balances
exploitation with uncertainty-guided probing. And it appears especially beneficial. In cold-start and
drifting environments.

Robustness across scenarios: TS-Bernoulli’s advantage is consistent in both mean and dispersion,
supporting its use as a strong default for short-video recommendation when rewards can be modeled
as Bernoulli.

Operational implications: For production systems with tight latency budgets, TS requires only
light posterior updates. UCBI is simple to implement but may trail in early-stage learning; ETC can
be fragile once committed.
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Latency and throughput: In a feed loop, TS-Bernoulli requires sampling one Beta variable per
candidate item and a single argmax. With vectorization and batched Random Number Generator
(RNG), the per-request overhead remains small relative to ranking pipelines. UCBI’s index
computation is likewise O(K), but the empirical gap that this study observes suggests TS’s
randomized probing is more sample-efficient in practice.

Cold-start bootstrapping: Reasonable priors can reduce early variance. In practice, platforms
often warm-start new items with global click priors or creator-level priors to avoid pathological
under-exploration. This study's non-contextual runs use uniform Beta(1,1) priors; contextual or
hierarchical extensions can encode richer warm-starts.

Drift response and safety: When temporal drift is suspected, discounting, sliding windows, or
occasional resets help maintain agility (cf. non-stationary bandits). To preserve user experience,
exploration caps per session and per-user guardrails can be enforced; interleaving-style holdouts and
progressive rollouts reduce risk.

Fairness and exposure balance: Short-video ecosystems rely on creator health. Bandit layers
should integrate exposure-aware constraints or objectives so that exploration does not systematically
under-serve minority or new creators. Monitoring should include exposure gini/entropy in addition
to CTR and regret.

Operational checklist: Monitor regret proxies, CTR, optimal-ratio, and exposure fairness; alert on
drift via population-level shifts in reward/residuals; maintain rollback plans and stable baselines;
periodically reconcile offline replay estimates with online A/B outcomes to prevent evaluation drift.

Scenario-level aggregates computed from three seeds are summarized. TS-Bernoulli dominates in
CTR and regret across all scenarios. Tables report mean CTR, cumulative regret, and cumulative
reward; figures display mean trajectories with 1 standard deviation across seeds.

Scenario-level aggregates computed from three seeds are summarized. TS-Bernoulli dominates in
CTR and regret across all scenarios. Tables report mean CTR, cumulative regret, and cumulative
reward; figures display mean trajectories with =1 standard deviation across seeds.

Base Scenario. Fig. 1 and Table 1 show that TS-Bernoulli improves CTR by roughly 17-22%
over ETC/UCBI1 and reduces regret by 28-29% relative to UCBI. Variance bands are narrow,
indicating stable behavior across seeds.
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Figure 1. Base scenario—cumulative reward and regret (mean=std across seeds) (photo credit:
original)

Table 1. Aggregate metrics (mean across seeds)

Algorithm CTR (mean) Regret Total Reward
ETC 0.395 532.18 790.00
UCBI1 0.369 584.18 738.00

TS-Bernoulli 0.452 417.85 904.33

Cold-start Scenario. Fig. 2 shows that UCBI1 suffers from slow initial learning, yielding the
highest regret. TS-Bernoulli reduces regret by ~30% versus UCB1 and by =12% versus ETC,
suggesting that posterior sampling accelerates effective exploration under sparse evidence.
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Figure 2. Cold-start scenario—cumulative reward and regret (mean+std across seeds) (photo credit:
original)

Temporal-shift Scenario. Table 2 shows that Non-stationarity amplifies the gap between these
algorithms. TS-Bernoulli maintains the best performance, indicating stronger resilience to temporal
drift. ETC’s commit phase is vulnerable to shifts; UCBI1 adapts but remains slower than
TS-Bernoulli.

Table 2. Temporal-shift scenario—aggregate metrics (mean across seeds)

Algorithm CTR (mean) Regret Total Reward
ETC 0.344 634.85 687.33
UCBI 0.361 601.18 721.00

TS-Bernoulli 0.428 466.51 855.67

Robustness and Error-band Interpretation. Across scenarios, the error bands (+1 standard
deviation across seeds) provide a compact view of stability. In the base environment, bands narrow
as the horizon grows, reflecting consistent convergence dynamics. Under cold-start, early-horizon
dispersion is larger—consistent with sparse feedback—yet TS-Bernoulli’s band contracts more
quickly, indicating faster identification of promising items. In temporal-shift, variance widens
around the change point by construction; the subsequent shrinkage for TS-Bernoulli suggests more
decisive re-allocation after drift. This study verified that results are qualitatively stable under modest
changes to horizon length and exploration constants, and that outlier seeds do not reverse algorithm
rankings. Additional robustness checks—alternative seeds and sensitivity to the ETC exploration
budget—are summarized in Appendix A.5 (placeholders to be completed), with full csvs available in
‘outputs/metrics/".

5. Conclusion

This study evaluates three canonical non-contextual multi-armed bandit algorithms (ETC, UCBI,
TS-Bernoulli) for short-video recommendation across base, cold-start, and temporal-shift scenarios.
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The results consistently demonstrate that TS-Bernoulli outperforms its counterparts: it achieves the
highest CTR and the lowest cumulative regret in all scenarios, with its advantage stable in both
mean performance and result dispersion. This superiority stems from TS-Bernoulli’s randomized
exploration strategy, which efficiently balances exploitation of high-performing items and
uncertainty-guided probing—an attribute particularly valuable in cold-start (information scarcity)
and temporal-shift (non-stationary preferences) environments. Given its minimal computational
complexity (lightweight posterior updates) and robust performance, Thompson Sampling is
recommended as the default bandit algorithm for short-video recommendation systems where click
feedback can be modeled as a Bernoulli process.

Notably, this work has several limitations that guide future research directions. First, the non-
contextual setting omits user, item, and contextual features, which may alter algorithm rankings in
practical contextual bandit scenarios. Second, cold-start and temporal-shift are simulated with
simplified controls (e.g., new items introduced at timestep 200, preference shifts at timestep 500),
whereas real-world platforms exhibit more complex, multi-factor drift. Third, aggregation over only
three pseudo-random seeds reduces but does not eliminate result variance. This study's binary click-
based reward model approximates user utility, while metrics like watch-time or dwell-time could
yield different conclusions. Finally, results are specific to the SVI-200K dataset and selected
hyperparameters (e.g., K=200, T=2000, Beta(1,1) priors), so outcomes may shift with different
experimental setups. Future work will address these limitations by extending to contextual bandits,
integrating richer reward models, and validating on larger-scale real-world interaction logs.
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