References
[1]. Sun, C. Y., Dong, Q., Wang, Y. W., Ma, F. H., Xie, T. C., Li, M. (2024). A Machine Learning-Based Analysis Method for Rollover Accident Severity. Journal of Traffic Engineering, 68-77.
[2]. Dong, C. J., Wan, Y. J., Li, P. H. (2025). Multi-Category Traffic Accident Risk Assessment Based on Interpretable Random Forest. Journal of Beijing University of Technology, 1-10.
[3]. Cheng, R., Pan, Y., Dai, J. J., Wang, T., Xie, J. C. (2023). A Review of Roadside Accident Risk Assessment and Roadside Safety Design Research on Highways. China Safety Science Journal, 33(09)214-226.
[4]. Chen, F., Chen , S., Ma, X. (2018). Analysis of hourly crash likelihood using unbalanced panel data mixed logit model and real-time driving environmental big data. Journal of Safety Research, 65153-159.
[5]. Xu, C. C., Liu, P., Wang, W., Li, Z. B. (2012). Evaluation of the impacts of traffic states on crash risks on freeways. Accident Analysis and Prevention, 47162-171.
[6]. Moosavi, S., Mohammad H. S., Srinivasan P., Rajiv R., (2019). A Countrywide Traffic Accident Dataset. arXiv preprint arXiv.
[7]. Zhang, S. Y., Wang, A. Y. (2025). Credit Risk Assessment of Small and Medium Enterprises Based on SMOTE-Boruta-LightGBM. Times Economics and Trade, 22(04): 42-48.
[8]. Wang, L. M., Zhu, L. J., Liu, J. G. (2025). Prediction of Coal Volatile Matter Content Based on Terahertz Spectroscopy and Random Forest Algorithm. Chinese Journal of Inorganic Analytical Chemistry, 15(06): 867-873.
[9]. Moosavi, S., Mohammad, H. S., Srinivasan P., Radu T., Rajiv, R., (2019). Accident Risk Prediction based on Heterogeneous Sparse Data: New Dataset and Insights. In proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems.
[10]. Wang, X. (2016). Multi-Class Classification Method for Imbalanced Data Based on Tree Structure. Journal of Lvliang University, 6(02): 8-10.