References
[1]. Jing, G., J.H. Ban, L. Gang, et al.(2018). Status of Tooth Loss and Denture Restoration in Chinese Adult Population: Findings from the 4th National Oral Health Survey. Chinese Journal of Dental Research, 21(4).
[2]. Yelick, P.C. and P.T. Sharpe.(2019). Tooth Bioengineering and Regenerative Dentistry. J Dent Res, 98(11): p. 1173-1182.
[3]. Zhai, Q., Z. Dong, W. Wang, et al.(2019). Dental stem cell and dental tissue regeneration. Front Med, 13(2): p. 152-159.
[4]. Jazayeri, H.E., S.M. Lee, L. Kuhn, et al.(2020). Polymeric scaffolds for dental pulp tissue engineering: A review. Dent Mater, 36(2): p. e47-e58.
[5]. Monteiro, N. and P.C. Yelick.(2017). Advances and perspectives in tooth tissue engineering. J Tissue Eng Regen Med, 11(9): p. 2443-2461.
[6]. Yamada, Y., S. Nakamura-Yamada, R. Konoki, et al.(2020). Promising advances in clinical trials of dental tissue-derived cell-based regenerative medicine. Stem cell research & therapy, 11: p. 1-10.
[7]. Rahimnejad, M., H. Makkar, R. Dal‐Fabbro, et al.(2024). Biofabrication strategies for oral soft tissue regeneration. Advanced Healthcare Materials, 13(18): p. 2304537.
[8]. Nguyen-Thi, T.-D., B.-H. Nguyen-Huynh, T.-T. Vo-Hoang, et al.(2023). Stem cell therapies for periodontal tissue regeneration: A meta-analysis of clinical trials. Journal of Oral Biology and Craniofacial Research, 13(5): p. 589-597.
[9]. Yuan, W., L.d.A.Q. Ferreira, B. Yu, et al.(2024). Dental-derived stem cells in tissue engineering: the role of biomaterials and host response. Regenerative Biomaterials, 11: p. rbad100.
[10]. Botelho, J., M.A. Cavacas, V. Machado, et al.(2017). Dental stem cells: recent progresses in tissue engineering and regenerative medicine. Ann Med, 49(8): p. 644-651.
[11]. Gronthos, S., M. Mankani, J. Brahim, et al.(2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences, 97(25): p. 13625-13630.
[12]. Mata, M., S. Peydró, J.J.M. de Llano, et al.(2022). Human dental pulp stem cells differentiate into cementoid-like-secreting cells on decellularized teeth scaffolds. International Journal of Molecular Sciences, 23(24): p. 15588.
[13]. Kim, I.-H., M. Jeon, K. Cheon, et al.(2021). In vivo evaluation of decellularized human tooth scaffold for dental tissue regeneration. Applied Sciences, 11(18): p. 8472.
[14]. Guo, W., K. Gong, H. Shi, et al.(2012). Dental follicle cells and treated dentin matrix scaffold for tissue engineering the tooth root. Biomaterials, 33(5): p. 1291-302.
[15]. Liu, L., Y. Wen, L. Chen, et al.(2024). Xenogenous implanted dental follicle stem cells promote periodontal regeneration through inducing the N2 phenotype of neutrophils. Stem Cell Research & Therapy, 15(1): p. 270.
[16]. Hu, L., Y. Liu, and S. Wang.(2018). Stem cell-based tooth and periodontal regeneration. Oral Dis, 24(5): p. 696-705.
[17]. Sonoyama, W., Y. Liu, D. Fang, et al.(2006). Mesenchymal stem cell-mediated functional tooth regeneration in swine. PloS one, 1(1): p. e79.
[18]. Yang, H., J. Fan, Y. Cao, et al.(2019). Distal-less homeobox 5 promotes the osteo-/dentinogenic differentiation potential of stem cells from apical papilla by activating histone demethylase KDM4B through a positive feedback mechanism. Experimental Cell Research, 374(1): p. 221-230.
[19]. Zhao, J., Y.-H. Zhou, Y.-Q. Zhao, et al.(2023). Oral cavity-derived stem cells and preclinical models of jaw-bone defects for bone tissue engineering. Stem Cell Research & Therapy, 14(1): p. 39.
[20]. Calabrese, T.C., K. Rothermund, C.M. Gabe, et al.(2024). Self-assembly of tooth root organoid from postnatal human dental stem cells. Tissue Engineering Part A, 30(9-10): p. 404-414.
[21]. Sharma, S., D. Srivastava, S. Grover, et al.(2014). Biomaterials in tooth tissue engineering: a review. J Clin Diagn Res, 8(1): p. 309-15.
[22]. Moussa, D.G. and C. Aparicio.(2019). Present and future of tissue engineering scaffolds for dentin-pulp complex regeneration. J Tissue Eng Regen Med, 13(1): p. 58-75.
[23]. Prescott, R.S., R. Alsanea, M.I. Fayad, et al.(2008). In vivo generation of dental pulp-like tissue by using dental pulp stem cells, a collagen scaffold, and dentin matrix protein 1 after subcutaneous transplantation in mice. Journal of endodontics, 34(4): p. 421-426.
[24]. Hu, L., D. Cheng, X. Yuan, et al.(2024). Engineered pre-dentin with well-aligned hierarchical mineralized collagen fibril bundles promote bio-root regeneration. Journal of Tissue Engineering, 15: p. 20417314241280961.
[25]. Roi, A., L.C. Ardelean, C.I. Roi, et al.(2019). Oral Bone Tissue Engineering: Advanced Biomaterials for Cell Adhesion, Proliferation and Differentiation. Materials (Basel), 12(14).
[26]. Feng, X., X. Lu, D. Huang, et al.(2014). 3D porous chitosan scaffolds suit survival and neural differentiation of dental pulp stem cells. Cellular and molecular neurobiology, 34: p. 859-870.
[27]. Yang, X., G. Han, X. Pang, et al.(2020). Chitosan/collagen scaffold containing bone morphogenetic protein‐7 DNA supports dental pulp stem cell differentiation in vitro and in vivo. Journal of biomedical materials research Part A, 108(12): p. 2519-2526.
[28]. Felszeghy, S., M. Hyttinen, R. Tammi, et al.(2000). Quantitative image analysis of hyaluronan expression in human tooth germs. European journal of oral sciences, 108(4): p. 320-326.
[29]. Ahmadian, E., A. Eftekhari, S.M. Dizaj, et al.(2019). The effect of hyaluronic acid hydrogels on dental pulp stem cells behavior. International journal of biological macromolecules, 140: p. 245-254.
[30]. Pilipchuk, S.P., A.B. Plonka, A. Monje, et al.(2015). Tissue engineering for bone regeneration and osseointegration in the oral cavity. Dent Mater, 31(4): p. 317-38.
[31]. Gu, Y., Y. Bai, and D. Zhang.(2018). Osteogenic stimulation of human dental pulp stem cells with a novel gelatin‐hydroxyapatite‐tricalcium phosphate scaffold. Journal of Biomedical Materials Research Part A, 106(7): p. 1851-1861.
[32]. Young, C., S. Terada, J. Vacanti, et al.(2002). Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. Journal of dental research, 81(10): p. 695-700.
[33]. Li, G., T. Zhou, S. Lin, et al.(2017). Nanomaterials for Craniofacial and Dental Tissue Engineering. J Dent Res, 96(7): p. 725-732.
[34]. Yang, X., F. Yang, X.F. Walboomers, et al.(2010). The performance of dental pulp stem cells on nanofibrous PCL/gelatin/nHA scaffolds. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 93(1): p. 247-257.
[35]. Gupte, M. and P. Ma.(2012). Nanofibrous scaffolds for dental and craniofacial applications. Journal of dental research, 91(3): p. 227-234.
[36]. Talaat, S., A.A. Hashem, A. Abu-Seida, et al.(2024). Regenerative potential of mesoporous silica nanoparticles scaffold on dental pulp and root maturation in immature dog’s teeth: a histologic and radiographic study. BMC Oral Health, 24(1): p. 817.
[37]. Kaigler, D., J.A. Cirelli, and W.V. Giannobile.(2006). Growth factor delivery for oral and periodontal tissue engineering. Expert Opin Drug Deliv, 3(5): p. 647-62.
[38]. Duncan, H.F., Y. Kobayashi, and E. Shimizu.(2018). Growth factors and cell homing in dental tissue regeneration. Current oral health reports, 5: p. 276-285.
[39]. Ahmed, G.M., E.A. Abouauf, N. AbuBakr, et al.(2020). Tissue Engineering Approaches for Enamel, Dentin, and Pulp Regeneration: An Update. Stem Cells Int, 2020: p. 5734539.
[40]. Tan, Q., Y. Cao, X. Zheng, et al.(2021). BMP4-regulated human dental pulp stromal cells promote pulp-like tissue regeneration in a decellularized dental pulp matrix scaffold. Odontology, 109(4): p. 895-903.
[41]. AC, S.A. and M.S. Islam.(2024). Potential Role of BMP7 in Regenerative Dentistry. International Dental Journal.
[42]. Widbiller, M., A. Rosendahl, M. Wölflick, et al.(2022). Isolation of endogenous TGF-β1 from root canals for pulp tissue engineering: A translational study. Biology, 11(2): p. 227.
[43]. Bai, Y., X. Liu, J. Li, et al.(2022). Stage‐Dependent Regulation of Dental Pulp Stem Cell Odontogenic Differentiation by Transforming Growth Factor‐β1. Stem cells international, 2022(1): p. 2361376.
[44]. Sugiaman, V.K., R. Djuanda, N. Pranata, et al.(2022). Tissue Engineering with Stem Cell from Human Exfoliated Deciduous Teeth (SHED) and Collagen Matrix, Regulated by Growth Factor in Regenerating the Dental Pulp. Polymers (Basel), 14(18).
[45]. Zhang, M., F. Jiang, X. Zhang, et al.(2017). The effects of platelet-derived growth factor-BB on human dental pulp stem cells mediated dentin-pulp complex regeneration. Stem Cells Translational Medicine, 6(12): p. 2126-2134.
[46]. Li, L. and Z. Wang.(2016). PDGF-BB, NGF and BDNF enhance pulp-like tissue regeneration via cell homing. RSC Advances, 6(111): p. 109519-109527.
[47]. Ono, M., M. Oshima, M. Ogawa, et al.(2017). Practical whole-tooth restoration utilizing autologous bioengineered tooth germ transplantation in a postnatal canine model. Scientific reports, 7(1): p. 44522.
[48]. Song, W.-P., L.-Y. Jin, M.-D. Zhu, et al.(2023). Clinical trials using dental stem cells: 2022 update. World Journal of Stem Cells, 15(3): p. 31.