Multiscale Mechanisms of Memory: From Synapses to Systems
Research Article
Open Access
CC BY

Multiscale Mechanisms of Memory: From Synapses to Systems

Han Hao 1*
1 University of Wisconsin–Madison
*Corresponding author: hhao27@wisc.edu
Published on 13 August 2025
Journal Cover
TNS Vol.124
ISSN (Print): 2753-8826
ISSN (Online): 2753-8818
ISBN (Print): 978-1-80590-271-3
ISBN (Online): 978-1-80590-272-0
Download Cover

Abstract

Learning and memory arise from biochemical events taking place in nanometre‑sized synaptic compartments and scale up to coordinated activity patterns that span the whole brain. Classical models of memory focused on N‑methyl‑d‑aspartate‑receptor (NMDAR)–dependent long‑term potentiation (LTP) and long‑term depression (LTD), treating these synaptic mechanisms as the molecular currency of information storage. However, new discoveries over the past two decades have compelled adoption of a broader, multiscale view of memory. This perspective integrates glial modulation, dynamic neuronal ensembles (engrams), oscillatory brain states, and advanced neurotechnologies. This review synthesises advances across five nested scales—molecules, synapses, circuits, networks, and technologies—highlighting how mechanisms at each level both constrain and enable those above and below. Throughout, we contrast past dogma with new evidence, identify unresolved gaps, and discuss translational opportunities for disorders such as Alzheimer’s disease and post‑traumatic stress disorder. By unifying molecular insight with systems‑level interrogation and AI‑assisted neural decoding, we outline a roadmap toward a predictive, multiscale science of memory.

Keywords:

Engram, Plasticity, Integration, Neuroscientific Techniques, Memory Therapy

View PDF
Hao,H. (2025). Multiscale Mechanisms of Memory: From Synapses to Systems. Theoretical and Natural Science,124,57-64.

References

[1]. C. J. Clarke-Williams, V. Lopes-dos-Santos, L. Lefèvre, D. Brizee, A. A. Causse, R. Rothaermel, K. Hartwich, P. V. Perestenko, R. Toth, and C. G. McNamara. (2024).Coordinating brain-distributed network activities in memory resistant to extinction Cell. 1872 409-427. e19.

[2]. L. Susman, N. Brenner, and O. Barak. (2019).Stable memory with unstable synapses Nature communications. 101 4441.

[3]. J. J. Langille and R. E. Brown. (2018).The synaptic theory of memory: a historical survey and reconciliation of recent opposition Frontiers in systems neuroscience. 12 52.

[4]. S. G. Grant. (2018).Synapse molecular complexity and the plasticity behaviour problem Brain and Neuroscience Advances. 2 2398212818810685.

[5]. J. E. Lisman and A. M. Zhabotinsky. (2001).A model of synaptic memory: a CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly Neuron. 312 191-201.

[6]. S. Heo, T. Kang, A. M. Bygrave, M. R. Larsen, and R. L. Huganir. (2023).Experience-induced remodeling of the hippocampal post-synaptic proteome and phosphoproteome Molecular & Cellular Proteomics. 2211 100661.

[7]. D. Nair, E. Hosy, J. D. Petersen, A. Constals, G. Giannone, D. Choquet, and J.-B. Sibarita. (2013).Super-resolution imaging reveals that AMPA receptors inside synapses are dynamically organized in nanodomains regulated by PSD95 Journal of Neuroscience. 3332 13204-13224.

[8]. M. Samavat, T. M. Bartol, C. Bromer, D. D. Hubbard, D. C. Hanka, M. Kuwajima, J. M. Mendenhall, P. H. Parker, J. B. Bowden, and W. C. Abraham. (2024).Long-term potentiation produces a sustained expansion of synaptic information storage capacity in adult rat hippocampus bioRxiv.

[9]. J. Goenaga, A. Araque, P. Kofuji, and D. Herrera Moro Chao. (2023).Calcium signaling in astrocytes and gliotransmitter release Frontiers in synaptic neuroscience. 15 1138577.

[10]. R. Refaeli, T. Kreisel, T. R. Yaish, M. Groysman, and I. Goshen. (2024).Astrocytes control recent and remote memory strength by affecting the recruitment of the CA1→ ACC projection to engrams Cell Reports. 433.

[11]. W. Sun, Z. Liu, X. Jiang, M. B. Chen, H. Dong, J. Liu, T. C. Südhof, and S. R. Quake. (2024).Spatial transcriptomics reveal neuron–astrocyte synergy in long-term memory Nature. 6278003 374-381.

[12]. W. C. Abraham. (2008).Metaplasticity: tuning synapses and networks for plasticity Nature Reviews Neuroscience. 95 387-387.

[13]. U. Frey and R. G. Morris. (1998).Synaptic tagging: implications for late maintenance of hippocampal long-term potentiation Trends in neurosciences. 215 181-188.

[14]. T. Hosokawa, P.-W. Liu, Q. Cai, J. S. Ferreira, F. Levet, C. Butler, J.-B. Sibarita, D. Choquet, L. Groc, and E. Hosy. (2021).CaMKII activation persistently segregates postsynaptic proteins via liquid phase separation Nature neuroscience. 246 777-785.

[15]. C. A. Denny, E. Lebois, and S. Ramirez. (2017).From engrams to pathologies of the brain Frontiers in neural circuits. 11 23.

[16]. G.-i. Tasaka, L. Feigin, I. Maor, M. Groysman, L. A. DeNardo, J. K. Schiavo, R. C. Froemke, L. Luo, and A. Mizrahi. (2020).The temporal association cortex plays a key role in auditory-driven maternal plasticity Neuron. 1073 566-579. e7.

[17]. D. F. Tomé, Y. Zhang, T. Aida, O. Mosto, Y. Lu, M. Chen, S. Sadeh, D. S. Roy, and C. Clopath. (2024).Dynamic and selective engrams emerge with memory consolidation Nature neuroscience. 273 561-572.

[18]. T. Rogerson, B. Jayaprakash, D. J. Cai, Y. Sano, Y.-S. Lee, Y. Zhou, P. Bekal, K. Deisseroth, and A. J. Silva. (2016).Molecular and cellular mechanisms for trapping and activating emotional memories PloS one. 118 e0161655.

[19]. C. W. Dickey, I. A. Verzhbinsky, S. Kajfez, B. Q. Rosen, C. E. Gonzalez, P. Y. Chauvel, S. S. Cash, S. Pati, and E. Halgren. (2024).Thalamic spindles and Up states coordinate cortical and hippocampal co-ripples in humans PLoS biology. 2211 e3002855.

[20]. C. McCormick, M. Moscovitch, T. A. Valiante, M. Cohn, and M. P. McAndrews. (2018).Different neural routes to autobiographical memory recall in healthy people and individuals with left medial temporal lobe epilepsy Neuropsychologia. 110 26-36.

[21]. C. Grienberger and J. C. Magee. (2022).Entorhinal cortex directs learning-related changes in CA1 representations Nature. 6117936 554-562.

[22]. E. G. Govorunova, O. A. Sineshchekov, R. Janz, X. Liu, and J. L. Spudich. (2015).Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics Science. 3496248 647-650.

[23]. J. Li, X. Du, N. Zheng, L. Xu, J. Xu, and S. Li. (2016).Contribution of carboxyl modified chiral mesoporous silica nanoparticles in delivering doxorubicin hydrochloride in vitro: pH-response controlled release, enhanced drug cellular uptake and cytotoxicity Colloids and Surfaces B: Biointerfaces. 141 374-381.

[24]. E. Dylda, J. M. Pakan, and N. L. Rochefort, Chronic Two-Photon Calcium Imaging in the Visual Cortex of Awake Behaving Mice, in Handbook of Behavioral Neuroscience. 2018, Elsevier. p. 235-251.

[25]. I. Malkiel, G. Rosenman, L. Wolf, and T. Hendler. "Self-supervised transformers for fmri representation". in International Conference on Medical Imaging with Deep Learning. 2022: (PMLR).pp.pages

[26]. S. S. Tummanapalli, T. Issar, N. Kwai, A. Poynten, A. V. Krishnan, M. Willcox, and M. Markoulli. (2020).Association of corneal nerve loss with markers of axonal ion channel dysfunction in type 1 diabetes Clinical Neurophysiology. 1311 145-154.

[27]. H. Zhang, W. Wu, M. Wang, J. Zhang, C. Guo, G. Han, and L. Wang. (2025).Integrated peripheral blood multi-omics profiling identifies immune signatures predictive of neoadjuvant PD-1 blockade efficacy in head and neck squamous cell carcinoma Journal of Translational Medicine. 231 693.

[28]. A. Marco. (2022).Activity-dependent remodeling of genome architecture in engram cells facilitates memory formation and recall Neural Regeneration Research. 175 991-993.

Cite this article

Hao,H. (2025). Multiscale Mechanisms of Memory: From Synapses to Systems. Theoretical and Natural Science,124,57-64.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

About volume

Volume title: Proceedings of ICBioMed 2025 Symposium: AI for Healthcare: Advanced Medical Data Analytics and Smart Rehabilitation

ISBN: 978-1-80590-271-3(Print) / 978-1-80590-272-0(Online)
Editor: Alan Wang
Conference date: 17 October 2025
Series: Theoretical and Natural Science
Volume number: Vol.124
ISSN: 2753-8818(Print) / 2753-8826(Online)