References
[1]. Van Battum, E. Y., Brignani, S., & Pasterkamp, R. J. (2015). Axon guidance proteins in neurological disorders. The Lancet Neurology, 14(5), 532–546.
[2]. Kolodkin, A. L., & Tessier-Lavigne, M. (2010). Mechanisms and Molecules of Neuronal Wiring: A Primer. Cold Spring Harbor Perspectives in Biology, 3(6), a001727–a001727.
[3]. Yaron, A., & Zheng, B. (2007). Navigating their way to the clinic: Emerging roles for axon guidance molecules in neurological disorders and injury. Developmental Neurobiology, 67(9), 1216–1231.
[4]. Marsh, A. P. L., Timothy James Edwards, Galea, C. A., Cooper, H. J., Engle, E. C., Saumya Shekhar Jamuar, Aurélie Méneret, Marie-Laure Moutard, Nava, C., Rastetter, A., Robinson, G., Rouleau, G. A., Roze, E., Spencer-Smith, M., Oriane Trouillard, Thierry, Walsh, C. T., Yu, T. W., Héron, D., & Sherr, E. H. (2018). DCCmutation update: Congenital mirror movements, isolated agenesis of the corpus callosum, and developmental split brain syndrome. Human Mutation, 39(1), 23–39.
[5]. Dominici, C., Moreno-Bravo, J. A., Puiggros, S. R., Rappeneau, Q., Rama, N., Vieugue, P., Bernet, A., Mehlen, P., & Chédotal, A. (2017). Floor-plate-derived netrin-1 is dispensable for commissural axon guidance. Nature, 545(7654), 350–354.
[6]. Varadarajan, S. G., Kong, J. H., Phan, K. D., Kao, T.-J., Panaitof, S. C., Cardin, J., Eltzschig, H., Kania, A., Novitch, B. G., & Butler, S. J. (2017). Netrin1 Produced by Neural Progenitors, Not Floor Plate Cells, Is Required for Axon Guidance in the Spinal Cord. Neuron, 94(4), 790-799.e3.
[7]. Sun, K. L. W., Correia, J. P., & Kennedy, T. E. (2011). Netrins: versatile extracellular cues with diverse functions. Development, 138(11), 2153–2169.
[8]. Blockus, H., & Chédotal, A. (2014). The multifaceted roles of Slits and Robos in cortical circuits: from proliferation to axon guidance and neurological diseases. Current Opinion in Neurobiology, 27, 82–88.
[9]. Marillat, V., Cases, O., Nguyen-Ba-Charvet, K. T., Tessier-Lavigne, M., Sotelo, C., & Chédotal, A. (2002). Spatiotemporal expression patterns of slit and robo genes in the rat brain. The Journal of Comparative Neurology, 442(2), 130–155.
[10]. R. Jeroen Pasterkamp. (2012). Getting neural circuits into shape with semaphorins. Nature Reviews Neuroscience, 13(9), 605–618.
[11]. Carulli, D., de Winter, F., & Verhaagen, J. (2021). Semaphorins in Adult Nervous System Plasticity and Disease. Frontiers in Synaptic Neuroscience, 13.
[12]. Liu, T., Li, Y., Shu, Y., Xiao, B., & Feng, L. (2018). Ephrinb3 modulates hippocampal neurogenesis and the reelin signaling pathway in a pilocarpineinduced model of epilepsy. International Journal of Molecular Medicine, 41(6), 3457–3467.
[13]. Kania, A., & Klein, R. (2016). Mechanisms of ephrin–Eph signalling in development, physiology and disease. Nature Reviews Molecular Cell Biology, 17(4), 240–256.
[14]. Liu, M., & Teng, T. (2025). Exosomes: new targets for understanding axon guidance in the developing central nervous system. Frontiers in Cell and Developmental Biology, 12.
[15]. Yu, T., Yang, L.-L., Zhou, Y., Wu, M.-F., & Jiao, J.-H. (2024). Exosome-mediated repair of spinal cord injury: a promising therapeutic strategy. Stem Cell Research & Therapy, 15(1).