Molecular Navigation: How Axon Guidance Cues Shape Neural Circuits
Research Article
Open Access
CC BY

Molecular Navigation: How Axon Guidance Cues Shape Neural Circuits

Hao Sun 1*
1 WLSA Shanghai Academy
*Corresponding author: sunhao20071202@outlook.com
Published on 13 August 2025
Journal Cover
TNS Vol.122
ISSN (Print): 2753-8826
ISSN (Online): 2753-8818
ISBN (Print): 978-1-80590-269-0
ISBN (Online): 978-1-80590-270-6
Download Cover

Abstract

Precise long-range axon guidance is essential for neural-circuit assembly, and its failure underlies disorders ranging from corpus-callosum agenesis to epilepsy and autism. Four ligand families, including netrins, slits, semaphorins and ephrins, provide combinatorial attract-repel signals that growth cones decode via receptor repertoires and cytoskeletal dynamics. Recent studies show how co-receptors, stoichiometry and second messengers pivot single cues between attraction and repulsion, yielding context-specific trajectories. Guidance programmes re-emerge in the adult brain during learning and after injury, supplying intrinsic blueprints for regeneration, yet their aberrant reactivation can drive maladaptive sprouting and network hyperexcitability. Therapeutic concepts now in pre-clinical testing include Eph inhibitors, exosome-delivered netrin-1 or Sonic Hedgehog, gene editing of guidance receptors and AI-assisted multi-cue scaffolds. This review integrates molecular and translational advances, linking defined wiring errors to clinical phenotypes and proposing how programmable guidance signals could achieve targeted and patient specific repair of damaged neural circuits, thereby laying a conceptual foundation for next generation regenerative neurology that unites developmental biology, biomaterials engineering, and data driven modelling.

Keywords:

axon guidance, neural circuit development, growth cone signaling, guidance cues and receptors, neuro regeneration

View PDF
Sun,H. (2025). Molecular Navigation: How Axon Guidance Cues Shape Neural Circuits. Theoretical and Natural Science,122,39-45.

References

[1]. Van Battum, E. Y., Brignani, S., & Pasterkamp, R. J. (2015). Axon guidance proteins in neurological disorders. The Lancet Neurology, 14(5), 532–546.

[2]. Kolodkin, A. L., & Tessier-Lavigne, M. (2010). Mechanisms and Molecules of Neuronal Wiring: A Primer. Cold Spring Harbor Perspectives in Biology, 3(6), a001727–a001727.

[3]. Yaron, A., & Zheng, B. (2007). Navigating their way to the clinic: Emerging roles for axon guidance molecules in neurological disorders and injury. Developmental Neurobiology, 67(9), 1216–1231.

[4]. Marsh, A. P. L., Timothy James Edwards, Galea, C. A., Cooper, H. J., Engle, E. C., Saumya Shekhar Jamuar, Aurélie Méneret, Marie-Laure Moutard, Nava, C., Rastetter, A., Robinson, G., Rouleau, G. A., Roze, E., Spencer-Smith, M., Oriane Trouillard, Thierry, Walsh, C. T., Yu, T. W., Héron, D., & Sherr, E. H. (2018). DCCmutation update: Congenital mirror movements, isolated agenesis of the corpus callosum, and developmental split brain syndrome. Human Mutation, 39(1), 23–39.

[5]. Dominici, C., Moreno-Bravo, J. A., Puiggros, S. R., Rappeneau, Q., Rama, N., Vieugue, P., Bernet, A., Mehlen, P., & Chédotal, A. (2017). Floor-plate-derived netrin-1 is dispensable for commissural axon guidance. Nature, 545(7654), 350–354.

[6]. Varadarajan, S. G., Kong, J. H., Phan, K. D., Kao, T.-J., Panaitof, S. C., Cardin, J., Eltzschig, H., Kania, A., Novitch, B. G., & Butler, S. J. (2017). Netrin1 Produced by Neural Progenitors, Not Floor Plate Cells, Is Required for Axon Guidance in the Spinal Cord. Neuron, 94(4), 790-799.e3.

[7]. Sun, K. L. W., Correia, J. P., & Kennedy, T. E. (2011). Netrins: versatile extracellular cues with diverse functions. Development, 138(11), 2153–2169.

[8]. Blockus, H., & Chédotal, A. (2014). The multifaceted roles of Slits and Robos in cortical circuits: from proliferation to axon guidance and neurological diseases. Current Opinion in Neurobiology, 27, 82–88.

[9]. Marillat, V., Cases, O., Nguyen-Ba-Charvet, K. T., Tessier-Lavigne, M., Sotelo, C., & Chédotal, A. (2002). Spatiotemporal expression patterns of slit and robo genes in the rat brain. The Journal of Comparative Neurology, 442(2), 130–155.

[10]. R. Jeroen Pasterkamp. (2012). Getting neural circuits into shape with semaphorins. Nature Reviews Neuroscience, 13(9), 605–618.

[11]. Carulli, D., de Winter, F., & Verhaagen, J. (2021). Semaphorins in Adult Nervous System Plasticity and Disease. Frontiers in Synaptic Neuroscience, 13.

[12]. Liu, T., Li, Y., Shu, Y., Xiao, B., & Feng, L. (2018). Ephrinb3 modulates hippocampal neurogenesis and the reelin signaling pathway in a pilocarpineinduced model of epilepsy. International Journal of Molecular Medicine, 41(6), 3457–3467.

[13]. Kania, A., & Klein, R. (2016). Mechanisms of ephrin–Eph signalling in development, physiology and disease. Nature Reviews Molecular Cell Biology, 17(4), 240–256.

[14]. Liu, M., & Teng, T. (2025). Exosomes: new targets for understanding axon guidance in the developing central nervous system. Frontiers in Cell and Developmental Biology, 12.

[15]. Yu, T., Yang, L.-L., Zhou, Y., Wu, M.-F., & Jiao, J.-H. (2024). Exosome-mediated repair of spinal cord injury: a promising therapeutic strategy. Stem Cell Research & Therapy, 15(1).

Cite this article

Sun,H. (2025). Molecular Navigation: How Axon Guidance Cues Shape Neural Circuits. Theoretical and Natural Science,122,39-45.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

About volume

Volume title: Proceedings of ICBioMed 2025 Symposium: Computational Modelling and Simulation for Biology and Medicine

ISBN: 978-1-80590-269-0(Print) / 978-1-80590-270-6(Online)
Editor: Alan Wang, Roman Bauer
Conference date: 19 September 2025
Series: Theoretical and Natural Science
Volume number: Vol.122
ISSN: 2753-8818(Print) / 2753-8826(Online)