References
[1]. Yates, C. R., Bruno, E. J., & Yates, M. E. D. (2022). Tinospora Cordifolia: A review of its immunomodulatory properties. Journal of Dietary Supplements, 19(2), 271–285. https: //doi.org/10.1080/19390211.2021.1873214
[2]. Song, W. M., & Colonna, M. (2018). The identity and function of microglia in neurodegeneration. Nature Immunology, 19(10), 1048–1058. https: //doi.org/10.1038/s41590-018-0212-1
[3]. Richard M. Ransohoff & Melissa A. Brown. (2012). Innate immunity in the central nervous system. Journal of Clinical Investigation, 122(4), 1164–1171. https: //doi.org/10.1172/JCI58644
[4]. Suzanne Hickman, Izzy, S., Sen, P., Morsett, L., & El Khoury, J. (2018). Microglia in neurodegeneration. Nature Neuroscience, 21(10), 1359–1369. https: //doi.org/10.1038/s41593-018-0242-x
[5]. Amy F. Lloyd, & Miron, V. E. (2019). The pro-remyelination properties of microglia in the central nervous system. Nature Reviews Neurology, 15(8), 447–458. https: //doi.org/10.1038/s41582-019-0184-2
[6]. Sarah A. Kent, & Miron, V. E. (2024). Microglia regulation of central nervous system myelin health and regeneration. Nature Reviews Immunology, 24(1), 49–63. https: //doi.org/10.1038/s41577-023-00907-4
[7]. Salter, M. W., & Stevens, B. (2017). Microglia emerge as central players in brain disease. Nature Medicine, 23(9), 1018–1027. https: //doi.org/10.1038/nm.4397
[8]. Siamon Gordon, & Martinez, F. O. (2010). Alternative Activation of Macrophages: Mechanism and Functions. Immunity, 32(5), 593–604. https: //doi.org/10.1016/j.immuni.2010.05.007
[9]. Vipin V. Dhote, Kilor, V. A., Mohan Maruga Raja, M. K., Singhai, A., Mandloi, A. S., & Upaganlawar, A. B. (2023). Effect of Tinospora cordifolia on neuroinflammation. In Treatments, Nutraceuticals, Supplements, and Herbal Medicine in Neurological Disorders (pp. 601–621). Elsevier. https: //doi.org/10.1016/B978-0-323-90052-2.00019-6
[10]. Anuradha Sharma, Bajaj, P., Bhandari, A., & Kaur, G. (2020). From ayurvedic folk medicine to preclinical neurotherapeutic role of a miraculous herb, Tinospora cordifolia. Neurochemistry International, 141, 104891. https: //doi.org/10.1016/j.neuint.2020.104891
[11]. Syed Afroz Ali, & Datusalia, A. K. (2024). Protective effects of Tinospora cordifolia miers extract against hepatic and neurobehavioral deficits in thioacetamide-induced hepatic encephalopathy in rats via modulating hyperammonemia and glial cell activation. Journal of Ethnopharmacology, 323, 117700. https: //doi.org/10.1016/j.jep.2023.117700
[12]. Hareram Birla, Rai, S. N., Singh, S. S., Zahra, W., Rawat, A., Tiwari, N., Singh, R. K., Pathak, A., & Singh, S. P. (2019). Tinospora cordifolia Suppresses Neuroinflammation in Parkinsonian Mouse Model. NeuroMolecular Medicine, 21(1), 42–53. https: //doi.org/10.1007/s12017-018-08521-7
[13]. Upendra Sharma, Bala, M., Kumar, N., Singh, B., Munshi, R. K., & Bhalerao, S. (2012). Immunomodulatory active compounds from Tinospora cordifolia. Journal of Ethnopharmacology, 141(3), 918–926. https: //doi.org/10.1016/j.jep.2012.03.027
[14]. Dorion, M.-F., Yaqubi, M., Senkevich, K., Kieran, N. W., MacDonald, A., Chen, C. X. Q., Luo, W., Wallis, A., Shlaifer, I., Hall, J. A., Dudley, R. W. R., Glass, I. A., Birth Defects Research Laboratory, Stratton, J. A., Fon, E. A., Bartels, T., Antel, J. P., Gan-or, Z., Durcan, T. M., & Healy, L. M. (2024). MerTK is a mediator of alpha-synuclein fibril uptake by human microglia. Brain, 147(2), 427–443. https: //doi.org/10.1093/brain/awad298
[15]. Guignant, C., Venet, F., Planel, S., Demaret, J., Gouel-Chéron, A., Nougier, C., Friggeri, A., Allaouchiche, B., Lepape, A., & Monneret, G. (2013). Increased MerTK expression in circulating innate immune cells of patients with septic shock. Intensive Care Medicine, 39(9), 1556–1564. https: //doi.org/10.1007/s00134-013-3006-9
[16]. Lee, J.-W. (2024). Enhanced phagocytosis associated with multinucleated microglia via Pyk2 inhibition in an acute β-amyloid infusion model.
[17]. Lindner, B., Burkard, T., & Schuler, M. (2020). Phagocytosis Assays with Different pH-Sensitive Fluorescent Particles and Various Readouts. BioTechniques, 68(5), 245–250. https: //doi.org/10.2144/btn-2020-0003