References
[1]. Buie, M. J., et al. (2023). Global hospitalization trends for Crohn’s disease and ulcerative colitis in the 21st century: A systematic review with temporal analyses. Clinical Gastroenterology and Hepatology, 21(9), 2211-2221.
[2]. Lichtenstein, G. R., et al. (2018). ACG clinical guideline: Management of Crohn's disease in adults. Official Journal of the American College of Gastroenterology | ACG, 113(4).
[3]. Le Berre, C., Honap, S., & Peyrin-Biroulet, L. (2023). Ulcerative colitis. The Lancet, 402(10401), 571-584.
[4]. Schreiber, S., et al. (2021). Randomized controlled trial: Subcutaneous vs intravenous infliximab CT-P13 maintenance in inflammatory bowel disease. Gastroenterology, 160(7), 2340-2353.
[5]. Kaplan, G. G. (2015). The global burden of IBD: From 2015 to 2025. Nature Reviews Gastroenterology & Hepatology, 12(12), 720-727.
[6]. Ng, S. C., et al. (2017). Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies. The Lancet, 390(10114), 2769-2778.
[7]. Wang, X., et al. (2024). The emerging role of the gut microbiota and its application in inflammatory bowel disease. Biomedicine & Pharmacotherapy, 179, 117302..
[8]. Zhu, M.-Z., et al. (2023). Exploring the efficacy of herbal medicinal products as oral therapy for inflammatory bowel disease. Biomedicine & Pharmacotherapy, 165, 115266.
[9]. Tang, X., et al. (2024). Targeted delivery of Fc-fused PD-L1 for effective management of acute and chronic colitis. Nature Communications, 15(1), 1673.
[10]. Hu, Q., et al. (2024). Polyphenolic nanoparticle-modified probiotics for microenvironment remodeling and targeted therapy of inflammatory bowel disease. ACS Nano, 18(20), 12917-12932.
[11]. Yang, S., et al. (2024). Ginseng-derived nanoparticles alleviate inflammatory bowel disease via the TLR4/MAPK and p62/Nrf2/Keap1 pathways. Journal of Nanobiotechnology, 22(1), 48.
[12]. Ishida, N., et al. (2021). C-reactive protein is superior to fecal biomarkers for evaluating colon-wide active inflammation in ulcerative colitis. Scientific Reports, 11(1), 12431.
[13]. Trasolini, R., et al. (2022). Fecal leukocyte esterase, an alternative biomarker to fecal calprotectin in inflammatory bowel disease: A pilot series. Gastro Hep Advances, 1(1), 45-51.
[14]. Huang, X., et al. (2023). Clinical significance of the C-reactive protein-to-bilirubin ratio in patients with ulcerative colitis. Frontiers in Medicine, 10.
[15]. Dolinger, M., Torres, J., & Vermeire, S. (2024). Crohn's disease. The Lancet, 403(10432), 1177-1191.
[16]. Annese, V., et al. (2013). European evidence-based consensus for endoscopy in inflammatory bowel disease. Journal of Crohn's and Colitis, 7(12), 982-1018.
[17]. Atreya, R., & Neurath, M. F. (2024). Biomarkers for personalizing IBD therapy: The quest continues. Clinical Gastroenterology and Hepatology, 22(7), 1353-1364.
[18]. Neurath, M. F. (2024). Strategies for targeting cytokines in inflammatory bowel disease. Nature Reviews Immunology, 24(8), 559-576.
[19]. Gilliland, A., et al. (2024). Pathobionts in inflammatory bowel disease: Origins, underlying mechanisms, and implications for clinical care. Gastroenterology, 166(1), 44-58.
[20]. Lopes, S. A., et al. (2023). Delivery strategies of probiotics from nano- and microparticles: Trends in the treatment of inflammatory bowel disease—An overview. Pharmaceutics, 15(11).
[21]. Li, M. C., & He, S. H. (2004). IL-10 and its related cytokines for treatment of inflammatory bowel disease. World Journal of Gastroenterology, 10(5), 620-625.
[22]. Liu, J., et al. (2023). Orally-delivered, cytokine-engineered extracellular vesicles for targeted treatment of inflammatory bowel disease. Small, 19(50), 2304023.
[23]. Fischer, S., et al. (2022). From structure to function - Ligand recognition by myeloid C-type lectin receptors. Computational and Structural Biotechnology Journal, 20, 5790-5812..
[24]. Saba, K., Denda-Nagai, K., & Irimura, T. (2009). A C-type lectin MGL1/CD301a plays an anti-inflammatory role in murine experimental colitis. American Journal of Pathology, 174(1), 144-152..
[25]. Casals, E., et al. (2020). Cerium oxide nanoparticles: Advances in biodistribution, toxicity, and preclinical exploration. Small, 16(20), 1907322.
[26]. Min, D. K., et al. (2023). Orally administrated inflamed colon-targeted nanotherapeutics for inflammatory bowel disease treatment by oxidative stress level modulation in colitis. ACS Nano, 17(23), 24404-24416.
[27]. Li, M., et al. (2023). Gold nanoparticles-embedded ceria with enhanced antioxidant activities for treating inflammatory bowel disease. Bioactive Materials, 25, 95-106.
[28]. Wang, C., et al. (2023). Therapeutic potential of exosome-based personalized delivery platform in chronic inflammatory diseases. Asian Journal of Pharmaceutical Sciences, 18(1), 100772.
[29]. Li, D. F., et al. (2023). Plant-derived exosomal nanoparticles: Potential therapeutic for inflammatory bowel disease. Nanoscale Advances, 5(14), 3575-3588.
[30]. Kim, J., et al. (2023). Amelioration of colitis progression by ginseng-derived exosome-like nanoparticles through suppression of inflammatory cytokines. Journal of Ginseng Research, 47(5), 627-637.
[31]. Karthikeyan, A., et al. (2021). Curcumin and its modified formulations on inflammatory bowel disease (IBD): The story so far and future outlook. Pharmaceutics, 13(4).
[32]. Laurindo, L. F., et al. (2023). Curcumin-based nanomedicines in the treatment of inflammatory and immunomodulated diseases: An evidence-based comprehensive review. Pharmaceutics, 15(1).
[33]. Lei, F., et al. (2023). Oral hydrogel nanoemulsion co-delivery system treats inflammatory bowel disease via anti-inflammatory and promoting intestinal mucosa repair. Journal of Nanobiotechnology, 21(1), 275.