Immunotherapies of Type 1 Diabetes: Modulation, Tolerance, Reconstitution and Replacement
Research Article
Open Access
CC BY

Immunotherapies of Type 1 Diabetes: Modulation, Tolerance, Reconstitution and Replacement

Yinji Liu 1*
1 School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
*Corresponding author: Garfield.tudou@gmail.com
Published on 20 July 2025
Volume Cover
TNS Vol.126
ISSN (Print): 2753-8826
ISSN (Online): 2753-8818
ISBN (Print): 978-1-80590-265-2
ISBN (Online): 978-1-80590-266-9
Download Cover

Abstract

Type 1 diabetes (T1D) is a chronic disease characterized by autoimmune destruction of pancreatic β cells, resulting in a lack of insulin secretion. Current treatments mainly rely on exogenous insulin supply. Although automated insulin infusion systems can effectively control blood sugar, they cannot reverse immunopathology or restore endogenous insulin secretion. This article divides emerging treatments for T1D into three categories: immune regulation, immune tolerance induction, and β cell regeneration and replacement. Immunomodulatory methods such as anti-CD3 antibodies (such as Teplizumab) and mesenchymal stem cell (MSC) infusion have shown some promise in preserving β cell function; tolerance induction therapy is based on autoantigens, such as insulin and GAD65 vaccines, but the efficacy is greatly affected by individual HLA differences. Emerging CAR-Tregs have higher specificity and potential. Regenerative and replacement therapies such as hematopoietic stem cell transplantation and islet-like cell transplantation have significant efficacy, but the need for immunosuppression remains their main challenge. At present, most treatments are still in the clinical trial stage. In the future, we can try to combine therapies with multiple mechanisms in order to achieve a more lasting and fundamental therapeutic effect.

Keywords:

Type 1 diabetes, autoimmunity, immune modulation, tolerance.

View PDF
Liu,Y. (2025). Immunotherapies of Type 1 Diabetes: Modulation, Tolerance, Reconstitution and Replacement. Theoretical and Natural Science,126,1-9.

References

[1]. Addissouky, T. A., Ali, M. M., El Sayed, I. E. T., & Wang, Y. (2024). Type 1 diabetes mellitus: retrospect and prospect. Bulletin of the National Research Centre, 48(1), 42.

[2]. Zarei, M., Sheikholeslami, M. A., Mozaffari, M., & Mortada, Y. (2025). Innovative immunotherapies and emerging treatments in type 1 diabetes management. Diabetes Epidemiology and Management, 17, 100247.

[3]. Subramanian, S., Khan, F., & Hirsch, I. B. (2024). New advances in type 1 diabetes. Bmj, 384.

[4]. Forlenza, G. P., DeSalvo, D. J., Aleppo, G., Wilmot, E. G., Berget, C., Huyett, L. M., Hadjiyianni, I., Méndez, J. J., Conroy, L. R., Ly, T. T., & Sherr, J. L. (2024). Real-world evidence of omnipod® 5 automated insulin delivery system use in 69, 902 people with type 1 diabetes. Diabetes Technology & amp; Therapeutics, 26(8), 514–525.

[5]. Jeun, R. (2025). Immunotherapies for prevention and treatment of type 1 diabetes. Immunotherapy, 17(3), 201–210.

[6]. Mondal, S., & Pappachan, J. M. (2025). Current perspectives and the future of disease-modifying therapies in type 1 diabetes. World Journal of Diabetes, 16(1), 99496.

[7]. Jacobsen, L. M., & Schatz, D. (2024). Immunotherapy-based strategies for treatment of type 1 diabetes. Hormone Research in Paediatrics, 1-19.

[8]. Yang, G., Fan, X., Liu, Y., Jie, P., Mazhar, M., Liu, Y., Dechsupa, N. & Wang, L. (2023). Immunomodulatory mechanisms and therapeutic potential of mesenchymal stem cells. Stem Cell Reviews and Reports, 19(5), 1214-1231.

[9]. Al Madhoun, A., Koti, L., Carrió, N., Atari, M., & Al-Mulla, F. (2024). Clinical application of umbilical cord mesenchymal stem cells preserves β-cells in type 1 diabetes. Stem Cells Translational Medicine, 13(2), 101-106.

[10]. Ludvigsson, J. (2020). Autoantigen treatment in type 1 diabetes: unsolved questions on how to select autoantigen and administration route. International journal of molecular sciences, 21(5), 1598.

[11]. Ludvigsson, J., Sumnik, Z., Pelikanova, T., Nattero Chavez, L., Lundberg, E., Rica, I., Martínez-Brocca, M. A., Ruiz de Adana, M., Wahlberg, J., Katsarou, A., Hanas, R., Hernandez, C., Clemente León, M., Gómez-Gila, A., Lind, M., Lozano, M. F., Sas, T., Samuelsson, U., Pruhova, S., Dietrich, F., Puente Marin, S., Nordlund, A., Hannelius, U. & Casas, R. (2021). Intralymphatic glutamic acid decarboxylase with vitamin D supplementation in recent-onset type 1 diabetes: a double-blind, randomized, placebo-controlled phase IIb trial. Diabetes Care, 44(7), 1604-1612.

[12]. Shi, Y., Lu, Y., & You, J. (2022). Antigen transfer and its effect on vaccine-induced immune amplification and tolerance. Theranostics, 12(13), 5888.

[13]. Passerini, L., Forlani, A., & Gregori, S. (2025). Advances in Regulatory Cell Therapy for Type 1 Diabetes: Emerging Strategies and Future Directions. European Journal of Immunology, 55(5), e202451722.

[14]. Spanier, J. A., Fung, V., Wardell, C. M., Alkhatib, M. H., Chen, Y., Swanson, L. A., Dwyer, A. J., Weno, M. E., Silva, N., Mitchell, J. S., Orban, P. C., Mojibian, M., Verchere, C. B., Fife, B. T., & Levings, M. K. (2023). Tregs with an MHC class II peptide-specific chimeric antigen receptor prevent autoimmune diabetes in mice. The Journal of clinical investigation, 133(18), e168601.

[15]. Pastore, I., Assi, E., Ben Nasr, M., Bolla, A. M., Maestroni, A., Usuelli, V., Loretelli, C., Seelam, A. J., Abdelsalam, A., Zuccotti, G. V., D'Addio, F., & Fiorina, P. (2021). Hematopoietic Stem Cells in Type 1 Diabetes. Frontiers in immunology, 12, 694118.

[16]. Wan, X. X., Zhang, D. Y., Khan, M. A., Zheng, S. Y., Hu, X. M., Zhang, Q., Yang, R. H., & Xiong, K. (2022). Stem Cell Transplantation in the Treatment of Type 1 Diabetes Mellitus: From Insulin Replacement to Beta-Cell Replacement. Frontiers in endocrinology, 13, 859638.

[17]. Hogrebe, N. J., Ishahak, M., & Millman, J. R. (2023). Developments in stem cell-derived islet replacement therapy for treating type 1 diabetes. Cell stem cell, 30(5), 530–548.

[18]. Cuscino, N., Castelbuono, S., Centi, C., Tinnirello, R., Cimino, M., Zito, G., Orlando, A., Pinzani, M., Conaldi, P. G., Mattina, A., & Miceli, V. (2025). A Bioartificial Device for the Encapsulation of Pancreatic β-Cells Using a Semipermeable Biocompatible Porous Membrane. Journal of Clinical Medicine, 14(5), 1631.

[19]. Toftdal, M. S., Grunnet, L. G., & Chen, M. (2024). Emerging Strategies for Beta Cell Encapsulation for Type 1 Diabetes Therapy. Advanced Healthcare Materials, 13(19), 2400185.

Cite this article

Liu,Y. (2025). Immunotherapies of Type 1 Diabetes: Modulation, Tolerance, Reconstitution and Replacement. Theoretical and Natural Science,126,1-9.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

About volume

Volume title: Proceedings of ICBioMed 2025 Symposium: AI for Healthcare: Advanced Medical Data Analytics and Smart Rehabilitation

ISBN: 978-1-80590-265-2(Print) / 978-1-80590-266-9(Online)
Editor: Alan Wang
Conference date: 17 October 2025
Series: Theoretical and Natural Science
Volume number: Vol.126
ISSN: 2753-8818(Print) / 2753-8826(Online)