References
[1]. van Elzelingen, W. et al. (2022) ‘Striatal dopamine signals are region specific and temporally stable across action-sequence habit formation’, Current biology, 32(5), pp. 1163-1174.e6. Available at: https: //doi.org/10.1016/j.cub.2021.12.027.
[2]. Lipton, D.M., Gonzales, B.J. and Citri, A. (2019) ‘Dorsal Striatal Circuits for Habits, Compulsions and Addictions’, Frontiers in systems neuroscience, 13, p. 28. Available at: https: //doi.org/10.3389/fnsys.2019.00028.
[3]. Hermsen, S. et al. (2016) ‘Using feedback through digital technology to disrupt and change habitual behavior: A critical review of current literature’, Computers in human behavior, 57, pp. 61–74. Available at: https: //doi.org/10.1016/j.chb.2015.12.023.
[4]. Smith, K.S. and Graybiel, A.M. (2016) ‘Habit formation’, Dialogues in Clinical Neuroscience, 18(1), pp. 33–43. Available at: https: //doi.org/10.31887/dcns.2016.18.1/ksmith.
[5]. Yin, H.H. (2025) ‘Aligning brain and behavior’, Current opinion in behavioral sciences, 62, p. 101487. Available at: https: //doi.org/10.1016/j.cobeha.2025.101487.
[6]. Grillner, S. (2025) ‘How circuits for habits are formed within the basal ganglia’, Proceedings of the National Academy of Sciences - PNAS, 122(13), p. e2423068122. Available at: https: //doi.org/10.1073/pnas.2423068122.
[7]. Michiels, M. et al. (2025) ‘The neural basis of habit formation measured in goal-directed response switching’, bioRxiv [Preprint]. Available at: https: //doi.org/10.1101/2025.03.13.643040.
[8]. Liu, X. et al. (2024) ‘Flexible high-density microelectrode arrays for closed-loop brain–machine interfaces: a review’, Frontiers in neuroscience, 18, p. 1348434. Available at: https: //doi.org/10.3389/fnins.2024.1348434.
[9]. Liu, Y. et al. (2024) ‘A high-density 1, 024-channel probe for brain-wide recordings in non-human primates’, Nature neuroscience, 27(8), pp. 1620–1631. Available at: https: //doi.org/10.1038/s41593-024-01692-6.
[10]. Yin, H.H. and Knowlton, B.J. (2006) ‘The role of the basal ganglia in habit formation’, Nature Reviews Neuroscience, 7(6), pp. 464–476. Available at: https: //doi.org/10.1038/nrn1919.
[11]. Balleine, B.W. and O’Doherty, J.P. (2010) ‘Human and Rodent Homologies in Action Control: Corticostriatal Determinants of Goal-Directed and Habitual Action’, Neuropsychopharmacology, 35(1), pp. 48–69. Available at: https: //doi.org/10.1038/npp.2009.131.
[12]. Lee, K. et al. (2023) ‘Anatomical and Functional Comparison of the Caudate Tail in Primates and the Tail of the Striatum in Rodents: Implications for Sensory Information Processing and Habitual Behavior’, Molecules and cells, 46(8), pp. 461–469. Available at: https: //doi.org/10.14348/molcells.2023.0051.
[13]. Yin, H.H. et al. (2005) ‘The role of the dorsomedial striatum in instrumental conditioning’, European Journal of Neuroscience, 22(2), pp. 513–523. Available at: https: //doi.org/10.1111/j.1460-9568.2005.04218.x.
[14]. Oyama, K. et al. (2024) ‘Distinct roles of monkey OFC-subcortical pathways in adaptive behavior’, Nature Communications, 15(1), p. 6487. Available at: https: //doi.org/10.1038/s41467-024-50505-8.
[15]. Smith, K.S. et al. (2012) ‘Reversible online control of habitual behavior by optogenetic perturbation of medial prefrontal cortex’, Proceedings of the National Academy of Sciences, 109(46), pp. 18932–18937. Available at: https: //doi.org/10.1073/pnas.1216264109.
[16]. Kruglanski, A.W. and Szumowska, E. (2020) ‘Habitual Behavior Is Goal-Driven’, Perspectives on Psychological Science, 15(5), pp. 1256–1271. Available at: https: //doi.org/10.1177/1745691620917676.
[17]. Barter, J.W. and Yin, H.H. (2021) ‘Achieving natural behavior in a robot using neurally inspired hierarchical perceptual control’, iScience, 24(9), p. 102948. Available at: https: //doi.org/10.1016/j.isci.2021.102948.
[18]. Malvaez, M. (2020) ‘Neural substrates of habit’, Journal of neuroscience research, 98(6), pp. 986–997. Available at: https: //doi.org/10.1002/jnr.24552.
[19]. Peksa, J. and Mamchur, D. (2023) ‘State-of-the-art on brain-computer interface technology’, Sensors (Basel, Switzerland), 23(13), p. 6001. Available at: https: //doi.org/10.3390/s23136001.
[20]. Janjua, T.A.M. et al. (2021) ‘The effect of peripheral high-frequency electrical stimulation on the primary somatosensory cortex in pigs’, IBRO neuroscience reports, 11, pp. 112–118. Available at: https: //doi.org/10.1016/j.ibneur.2021.08.004.
[21]. Olsen, L.K. et al. (2022) ‘Vagus nerve stimulation-induced cognitive enhancement: Hippocampal neuroplasticity in healthy male rats’, Brain stimulation, 15(5), pp. 1101–1110. Available at: https: //doi.org/10.1016/j.brs.2022.08.001.
[22]. Yang, J. et al. (2024) ‘Precise and low-power closed-loop neuromodulation through algorithm-integrated circuit co-design’, Frontiers in neuroscience, 18, p. 1340164. Available at: https: //doi.org/10.3389/fnins.2024.1340164.
[23]. Cuschieri, A., Borg, N. and Zammit, C. (2022) ‘Closed loop deep brain stimulation: A systematic scoping review’, Clinical neurology and neurosurgery, 223, p. 107516. Available at: https: //doi.org/10.1016/j.clineuro.2022.107516.
[24]. Xue, Q. et al. (2024) ‘Graph neural network based on brain inspired forward-forward mechanism for motor imagery classification in brain-computer interfaces’, Frontiers in neuroscience, 18, p. 1309594. Available at: https: //doi.org/10.3389/fnins.2024.1309594.
[25]. Zhang, S. et al. (2016) ‘A silicon based implantable microelectrode array for electrophysiological and dopamine recording from cortex to striatum in the non-human primate brain’, Biosensors & bioelectronics, 85, pp. 53–61. Available at: https: //doi.org/10.1016/j.bios.2016.04.087.
[26]. He, M., Wen, W. and Qi, C. (2023) ‘Neural Dynamic Underlying Coordination Process between Habitual and Goal-Directed Behavior’, bioRxiv [Preprint]. Available at: https: //doi.org/10.1101/2023.03.16.533062.
[27]. Groppa, S. et al. (2024) ‘Perspectives of Implementation of Closed-Loop Deep Brain Stimulation: From Neurological to Psychiatric Disorders’, Stereotactic and functional neurosurgery, 102(1), pp. 40–54. Available at: https: //doi.org/10.1159/000535114.
[28]. Meng, Q. et al. (2023) ‘Resting-state electroencephalography theta predicts neurofeedback treatment 4-month follow-up response in nicotine addiction’, General psychiatry, 36(4), p. e101091. Available at: https: //doi.org/10.1136/gpsych-2023-101091.
[29]. Bu, J. et al. (2021) ‘BCI-Based Neurofeedback Training for Quitting Smoking’, in Brain-Computer Interface Research. Switzerland: Springer International Publishing AG, pp. 13–23. Available at: https: //doi.org/10.1007/978-3-030-60460-8_2.