References
[1]. Z. Cheng et al., “(Ultra)wide bandgap semiconductor heterostructures for electronics cooling, ” Appl. Phys. Rev., vol. 11, no. 4, p. 041324, Nov. 2024.
[2]. P. L. Kapitza, “Heat Transfer and Superfluidity of Helium II, ” Phys Rev, vol. 60, no. 4, pp. 354–355, Aug. 1941.
[3]. E. T. Swartz and R. O. Pohl, “Thermal boundary resistance, ” Rev. Mod. Phys., vol. 61, no. 3, pp. 605–668.
[4]. Y. S. Hong, Semiconductor nanoscale interface thermal conductivity characteristics studied by molecular dynamics simulation, Tsinghua University Press, Beijing, China, 2018.
[5]. Y. Zhang, D. Ma, Y. Zang, X. Wang, and N. Yang, “A Modified Theoretical Model to Accurately Account for Interfacial Roughness in Predicting the Interfacial Thermal Conductance, ” Front. Energy Res., vol. 6, p. 48, Jun. 2018.
[6]. P. E. Hopkins and P. M. and Norris, “Effects of Joint Vibrational States on Thermal Boundary Conductance, ” Nanoscale Microscale Thermophys. Eng., vol. 11, no. 3–4, pp. 247–257, Dec. 2007.
[7]. A. Majumdar and P. Reddy, “Role of electron–phonon coupling in thermal conductance of metal–nonmetal interfaces, ” Appl. Phys. Lett., vol. 84, no. 23, pp. 4768–4770, Jun. 2004.
[8]. P. E. Hopkins and P. M. Norris, “Relative Contributions of Inelastic and Elastic Diffuse Phonon Scattering to Thermal Boundary Conductance Across Solid Interfaces, ” J. Heat Transf., vol. 131, no. 022402, Jan. 2009.
[9]. Z.-C. Zong et al., “Mixed mismatch model predicted interfacial thermal conductance of metal/semiconductor interface, ” Acta Phys. Sin., vol. 72, no. 3, pp. 034401–1, 2023.
[10]. A. H. Kahn, “Electrons and Phonons. The theory of transport phenomena in solids. J. M. Ziman. Oxford University Press, New York, 1960. xiv + 554 pp. Illus. $13.45., ” Science, vol. 133, no. 3447, pp. 187–188, Jan. 1961.
[11]. M. Zacharias et al., “Efficient First-Principles Methodology for the Calculation of the All-Phonon Inelastic Scattering in Solids, ” Phys. Rev. Lett., vol. 127, no. 20, p. 207401, Nov. 2021.
[12]. W. Chen et al., “Elastic and inelastic phonon scattering effects on thermal conductance across Au/graphene/Au interface, ” J. Appl. Phys., vol. 135, no. 16, p. 165107, Apr. 2024.
[13]. H.-K. Lyeo and D. G. Cahill, “Thermal conductance of interfaces between highly dissimilar materials, ” Phys. Rev. B, vol. 73, no. 14, p. 144301, Apr. 2006.
[14]. R. J. Stoner and H. J. Maris, “Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K, ” Phys. Rev. B, vol. 48, no. 22, pp. 16373–16387, Dec. 1993.
[15]. B. Hu, W. Bao, G. Chen, Z. Wang, and D. Tang, “Boltzmann transport equation simulation of phonon transport across GaN/AlN interface, ” Comput. Mater. Sci., vol. 230, p. 112485, Oct. 2023.
[16]. Y. Quan, Yue , Shengying, and B. and Liao, “Impact of Electron-Phonon Interaction on Thermal Transport: A Review, ” Nanoscale Microscale Thermophys. Eng., vol. 25, no. 2, pp. 73–90, Apr. 2021.
[17]. M. Li, Y. Wang, J. Zhou, J. Ren, and B. Li, “Thermal boundary conductance across metal-nonmetal interfaces: effects of electron-phonon coupling both in metal and at interface, ” Eur. Phys. J. B, vol. 88, no. 6, p. 149, Jun. 2015.
[18]. X. Li, J. Han, and S. Lee, “Thermal resistance from non-equilibrium phonons at Si–Ge interface, ” Mater. Today Phys., vol. 34, p. 101063, May 2023.
[19]. J. Han and S. Lee, “Thermal resistance across Si–SiGe alloy interface from phonon distribution mismatch, ” Appl. Phys. Lett., vol. 124, no. 14, p. 142201, Apr. 2024.