References
[1]. Smith, S. L. (1996). Ten years of orthoclone OKT3 (muromonab-CD3): A review. Journal of Transplant Coordination, 6(3), 109–121. https: //doi.org/10.1177/090591999600600304
[2]. Qian, L., Lin, X., Gao, X., Khan, R. U., Liao, J.-Y., Du, S., Ge, J., Zeng, S., & Yao, S. Q. (2023). The dawn of a new era: Targeting the “undruggables” with antibody-based therapeutics. Chemical Reviews, 123(12), 7782–7853. https: //doi.org/10.1021/acs.chemrev.2c00915
[3]. The Antibody Society. (n.d.). Antibody therapeutics product data. Retrieved April 23, 2025, from https: //www.antibodysociety.org/antibody-therapeutics-product-data/
[4]. Hong, Y., Nam, S.-M., & Moon, A. (2023). Antibody–drug conjugates and bispecific antibodies targeting cancers: Applications of click chemistry. Archives of Pharmacal Research, 46(3), 131–148. https: //doi.org/10.1007/s12272-023-01433-6
[5]. Cheng, J., Liang, T., Xie, X.-Q., Feng, Z., & Meng, L. (2024). A new era of antibody discovery: An in-depth review of AI-driven approaches. Drug Discovery Today, 29(6), 103984. https: //doi.org/10.1016/j.drudis.2024.103984
[6]. Du‐Harpur, X., Watt, F. M., Luscombe, N. M., & Lynch, M. D. (2020). What is AI? Applications of artificial intelligence to dermatology. British Journal of Dermatology, 183(3), 423–430. https: //doi.org/10.1111/bjd.18880
[7]. Norman, R. A., Ambrosetti, F., Bonvin, A. M. J. J., Colwell, L. J., Kelm, S., Kumar, S., & Krawczyk, K. (2020). Computational approaches to therapeutic antibody design: Established methods and emerging trends. Briefings in Bioinformatics, 21(5), 1549–1567. https: //doi.org/10.1093/bib/bbz095
[8]. Dewaker, V., Morya, V. K., Kim, Y. H., Park, S. T., Kim, H. S., & Koh, Y. H. (2025). Revolutionizing oncology: The role of artificial intelligence (AI) as an antibody design, and optimization tools. Biomarker Research, 13(1), 52. https: //doi.org/10.1186/s40364-025-00764-4
[9]. Sleno, L., & Emili, A. (2008). Proteomic methods for drug target discovery. Current Opinion in Chemical Biology, 12(1), 46–54. https: //doi.org/10.1016/j.cbpa.2008.01.022
[10]. Kamya, P., Ozerov, I. V., Pun, F. W., Tretina, K., Fokina, T., Chen, S., Naumov, V., Long, X., Lin, S., Korzinkin, M., Polykovskiy, D., Aliper, A., Ren, F., & Zhavoronkov, A. (2024). PandaOmics: An AI-driven platform for therapeutic target and biomarker discovery. Journal of Chemical Information and Modeling, 64(10), 3961–3969. https: //doi.org/10.1021/acs.jcim.3c01619
[11]. Clifford, J. N., Høie, M. H., Deleuran, S., Peters, B., Nielsen, M., & Marcatili, P. (2022). BepiPred ‐3.0: Improved B‐cell epitope prediction using protein language models. Protein Science, 31(12), e4497. https: //doi.org/10.1002/pro.4497
[12]. Zhou, C., Chen, Z., Zhang, L., Yan, D., Mao, T., Tang, K., Qiu, T., & Cao, Z. (2019). SEPPA 3.0—Enhanced spatial epitope prediction enabling glycoprotein antigens. Nucleic Acids Research, 47(W1), W388–W394. https: //doi.org/10.1093/nar/gkz413
[13]. Bertoline, L. M. F., Lima, A. N., Krieger, J. E., & Teixeira, S. K. (2023). Before and after AlphaFold2: An overview of protein structure prediction. Frontiers in Bioinformatics, 3. https: //doi.org/10.3389/fbinf.2023.1120370
[14]. Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., Ronneberger, O., Willmore, L., Ballard, A. J., Bambrick, J., Bodenstein, S. W., Evans, D. A., Hung, C.-C., O’Neill, M., Reiman, D., Tunyasuvunakool, K., Wu, Z., Žemgulytė, A., Arvaniti, E., … Jumper, J. M. (2024). Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature, 630(8016), 493–500. https: //doi.org/10.1038/s41586-024-07487-w
[15]. Ruffolo, J. A., Chu, L.-S., Mahajan, S. P., & Gray, J. J. (2023). Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies. Nature Communications, 14(1), 2389. https: //doi.org/10.1038/s41467-023-38063-x
[16]. Mishra, A. K., & Mariuzza, R. A. (2018). Insights into the structural basis of antibody affinity maturation from next-generation sequencing. Frontiers in Immunology, 9. https: //doi.org/10.3389/fimmu.2018.00117
[17]. Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau, F., & Serrano, L. (2005). The FoldX web server: An online force field. Nucleic Acids Research, 33(suppl_2), W382–W388. https: //doi.org/10.1093/nar/gki387
[18]. Das, R., & Baker, D. (2008). Macromolecular modeling with Rosetta. Annual Review of Biochemistry, 77, 363–382. https: //doi.org/10.1146/annurev.biochem.77.062906.171838
[19]. Chen, C., Herpoldt, K.-L., Zhao, C., Wang, Z., Collins, M., Shang, S., & Benson, R. (2025). AffinityFlow: Guided flows for antibody affinity maturation (No. arXiv: 2502.10365). arXiv. https: //doi.org/10.48550/arXiv.2502.10365
[20]. Oeller, M., Kang, R., Bell, R., Ausserwöger, H., Sormanni, P., & Vendruscolo, M. (2023). Sequence-based prediction of pH-dependent protein solubility using CamSol. Briefings in Bioinformatics, 24(2), bbad004. https: //doi.org/10.1093/bib/bbad004
[21]. Prihoda, D., Maamary, J., Waight, A., Juan, V., Fayadat-Dilman, L., Svozil, D., & Bitton, D. A. (2022). BioPhi: A platform for antibody design, humanization, and humanness evaluation based on natural antibody repertoires and deep learning. mAbs, 14(1), 2020203. https: //doi.org/10.1080/19420862.2021.2020203
[22]. Philpott, D. N., Gomis, S., Wang, H., Atwal, R., Kelil, A., Sack, T., Morningstar, B., Burnie, C., Sargent, E. H., Angers, S., Sidhu, S., & Kelley, S. O. (2022). Rapid on-cell selection of high-performance human antibodies. ACS Central Science, 8(1), 102–109. https: //doi.org/10.1021/acscentsci.1c01205
[23]. Mullard, A. (2021). Restoring IL-2 to its cancer immunotherapy glory. Nature Reviews Drug Discovery, 20(3), 163–166.
[24]. Huang, D., Yang, M., Wen, X., Xia, S., & Yuan, B. (2024). AI-driven drug discovery: Accelerating the development of novel therapeutics in biopharmaceuticals. Journal of Knowledge Learning and Science Technology, 3(3), Article 3. https: //doi.org/10.60087/jklst.vol3.n3.p.206-224
[25]. Saesen, R., Lacombe, D., & Huys, I. (2023). Real-world data in oncology: A questionnaire-based analysis of the academic research landscape examining the policies and experiences of the cancer cooperative groups. ESMO Open, 8(2), 100878. https: //doi.org/10.1016/j.esmoop.2023.100878
[26]. Modi, S., Glass, B., Prakash, A., Taylor-Weiner, A., Elliott, H., Wapinski, I., Sugihara, M., Saito, K., Kerner, J. K., Phillips, R., Shibutani, T., Honda, K., Khosla, A., Beck, A. H., & Cogswell, J. (2020). 286P Artificial intelligence analysis of advanced breast cancer patients from a phase I trial of trastuzumab deruxtecan (T-DxD): HER2 and histopathology features as predictors of clinical benefit. Annals of Oncology, 31(suppl_4), S355–S356. https: //doi.org/10.1016/j.annonc.2020.08.388
[27]. van der Wal, D., Jhun, I., Laklouk, I., Nirschl, J., Richer, L., Rojansky, R., Theparee, T., Wheeler, J., Sander, J., Feng, F., Mohamad, O., Savarese, S., Socher, R., & Esteva, A. (2021). Biological data annotation via a human-augmenting AI-based labeling system. NPJ Digital Medicine, 4(1), 1–7. https: //doi.org/10.1038/s41746-021-00520-6
[28]. Teli, J. S., Rai, A., & Lin, Y.-K. (2024). Abnormal returns to artificial intelligence patent infringement litigations. Journal of Management Information Systems, 41(2), 422–452. https: //doi.org/10.1080/07421222.2024.2340826
[29]. Dentamaro, V., Impedovo, D., Musti, L., Pirlo, G., & Taurisano, P. (2024). Enhancing early Parkinson’s disease detection through multimodal deep learning and explainable AI: Insights from the PPMI database. Scientific Reports, 14(1), 20941. https: //doi.org/10.1038/s41598-024-70165-4