Research Progress on Antibody Drug Development under the Guidance of Artificial Intelligence
Research Article
Open Access
CC BY

Research Progress on Antibody Drug Development under the Guidance of Artificial Intelligence

Nuo Xu 1*
1 School of Life Sciences, Lanzhou University,Lanzhou, China
*Corresponding author: xun2021@lzu.edu.cn
Published on 20 July 2025
Volume Cover
TNS Vol.126
ISSN (Print): 2753-8826
ISSN (Online): 2753-8818
ISBN (Print): 978-1-80590-265-2
ISBN (Online): 978-1-80590-266-9
Download Cover

Abstract

Due to their high specificity and low toxicity, antibody drugs have emerged as a key therapeutic approach for the treatment of cancer and autoimmune diseases. In recent years, artificial intelligence (AI), as the driving force of the Fourth Industrial Revolution, has been reshaping the paradigm of antibody drug development. This paper systematically reviews the application of AI throughout the entire development pipeline of antibody drugs, including target discovery and validation, antibody design and optimization, experimental design and functional verification, as well as preclinical and clinical research. Although AI holds great promise in the field of antibody development, it still faces a number of challenges, such as inconsistent data quality, poor model interpretability, and unresolved issues in technology ethics. The integration and advancement of generative AI and cutting-edge computational technologies are expected to accelerate the transformation of antibody drug development toward a more intelligent and precise direction.

Keywords:

Antibody drugs, Artificial intelligence, Drug development

View PDF
Xu,N. (2025). Research Progress on Antibody Drug Development under the Guidance of Artificial Intelligence. Theoretical and Natural Science,126,10-15.

References

[1]. Smith, S. L. (1996). Ten years of orthoclone OKT3 (muromonab-CD3): A review. Journal of Transplant Coordination, 6(3), 109–121. https: //doi.org/10.1177/090591999600600304

[2]. Qian, L., Lin, X., Gao, X., Khan, R. U., Liao, J.-Y., Du, S., Ge, J., Zeng, S., & Yao, S. Q. (2023). The dawn of a new era: Targeting the “undruggables” with antibody-based therapeutics. Chemical Reviews, 123(12), 7782–7853. https: //doi.org/10.1021/acs.chemrev.2c00915

[3]. The Antibody Society. (n.d.). Antibody therapeutics product data. Retrieved April 23, 2025, from https: //www.antibodysociety.org/antibody-therapeutics-product-data/

[4]. Hong, Y., Nam, S.-M., & Moon, A. (2023). Antibody–drug conjugates and bispecific antibodies targeting cancers: Applications of click chemistry. Archives of Pharmacal Research, 46(3), 131–148. https: //doi.org/10.1007/s12272-023-01433-6

[5]. Cheng, J., Liang, T., Xie, X.-Q., Feng, Z., & Meng, L. (2024). A new era of antibody discovery: An in-depth review of AI-driven approaches. Drug Discovery Today, 29(6), 103984. https: //doi.org/10.1016/j.drudis.2024.103984

[6]. Du‐Harpur, X., Watt, F. M., Luscombe, N. M., & Lynch, M. D. (2020). What is AI? Applications of artificial intelligence to dermatology. British Journal of Dermatology, 183(3), 423–430. https: //doi.org/10.1111/bjd.18880

[7]. Norman, R. A., Ambrosetti, F., Bonvin, A. M. J. J., Colwell, L. J., Kelm, S., Kumar, S., & Krawczyk, K. (2020). Computational approaches to therapeutic antibody design: Established methods and emerging trends. Briefings in Bioinformatics, 21(5), 1549–1567. https: //doi.org/10.1093/bib/bbz095

[8]. Dewaker, V., Morya, V. K., Kim, Y. H., Park, S. T., Kim, H. S., & Koh, Y. H. (2025). Revolutionizing oncology: The role of artificial intelligence (AI) as an antibody design, and optimization tools. Biomarker Research, 13(1), 52. https: //doi.org/10.1186/s40364-025-00764-4

[9]. Sleno, L., & Emili, A. (2008). Proteomic methods for drug target discovery. Current Opinion in Chemical Biology, 12(1), 46–54. https: //doi.org/10.1016/j.cbpa.2008.01.022

[10]. Kamya, P., Ozerov, I. V., Pun, F. W., Tretina, K., Fokina, T., Chen, S., Naumov, V., Long, X., Lin, S., Korzinkin, M., Polykovskiy, D., Aliper, A., Ren, F., & Zhavoronkov, A. (2024). PandaOmics: An AI-driven platform for therapeutic target and biomarker discovery. Journal of Chemical Information and Modeling, 64(10), 3961–3969. https: //doi.org/10.1021/acs.jcim.3c01619

[11]. Clifford, J. N., Høie, M. H., Deleuran, S., Peters, B., Nielsen, M., & Marcatili, P. (2022). BepiPred ‐3.0: Improved B‐cell epitope prediction using protein language models. Protein Science, 31(12), e4497. https: //doi.org/10.1002/pro.4497

[12]. Zhou, C., Chen, Z., Zhang, L., Yan, D., Mao, T., Tang, K., Qiu, T., & Cao, Z. (2019). SEPPA 3.0—Enhanced spatial epitope prediction enabling glycoprotein antigens. Nucleic Acids Research, 47(W1), W388–W394. https: //doi.org/10.1093/nar/gkz413

[13]. Bertoline, L. M. F., Lima, A. N., Krieger, J. E., & Teixeira, S. K. (2023). Before and after AlphaFold2: An overview of protein structure prediction. Frontiers in Bioinformatics, 3. https: //doi.org/10.3389/fbinf.2023.1120370

[14]. Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., Ronneberger, O., Willmore, L., Ballard, A. J., Bambrick, J., Bodenstein, S. W., Evans, D. A., Hung, C.-C., O’Neill, M., Reiman, D., Tunyasuvunakool, K., Wu, Z., Žemgulytė, A., Arvaniti, E., … Jumper, J. M. (2024). Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature, 630(8016), 493–500. https: //doi.org/10.1038/s41586-024-07487-w

[15]. Ruffolo, J. A., Chu, L.-S., Mahajan, S. P., & Gray, J. J. (2023). Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies. Nature Communications, 14(1), 2389. https: //doi.org/10.1038/s41467-023-38063-x

[16]. Mishra, A. K., & Mariuzza, R. A. (2018). Insights into the structural basis of antibody affinity maturation from next-generation sequencing. Frontiers in Immunology, 9. https: //doi.org/10.3389/fimmu.2018.00117

[17]. Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau, F., & Serrano, L. (2005). The FoldX web server: An online force field. Nucleic Acids Research, 33(suppl_2), W382–W388. https: //doi.org/10.1093/nar/gki387

[18]. Das, R., & Baker, D. (2008). Macromolecular modeling with Rosetta. Annual Review of Biochemistry, 77, 363–382. https: //doi.org/10.1146/annurev.biochem.77.062906.171838

[19]. Chen, C., Herpoldt, K.-L., Zhao, C., Wang, Z., Collins, M., Shang, S., & Benson, R. (2025). AffinityFlow: Guided flows for antibody affinity maturation (No. arXiv: 2502.10365). arXiv. https: //doi.org/10.48550/arXiv.2502.10365

[20]. Oeller, M., Kang, R., Bell, R., Ausserwöger, H., Sormanni, P., & Vendruscolo, M. (2023). Sequence-based prediction of pH-dependent protein solubility using CamSol. Briefings in Bioinformatics, 24(2), bbad004. https: //doi.org/10.1093/bib/bbad004

[21]. Prihoda, D., Maamary, J., Waight, A., Juan, V., Fayadat-Dilman, L., Svozil, D., & Bitton, D. A. (2022). BioPhi: A platform for antibody design, humanization, and humanness evaluation based on natural antibody repertoires and deep learning. mAbs, 14(1), 2020203. https: //doi.org/10.1080/19420862.2021.2020203

[22]. Philpott, D. N., Gomis, S., Wang, H., Atwal, R., Kelil, A., Sack, T., Morningstar, B., Burnie, C., Sargent, E. H., Angers, S., Sidhu, S., & Kelley, S. O. (2022). Rapid on-cell selection of high-performance human antibodies. ACS Central Science, 8(1), 102–109. https: //doi.org/10.1021/acscentsci.1c01205

[23]. Mullard, A. (2021). Restoring IL-2 to its cancer immunotherapy glory. Nature Reviews Drug Discovery, 20(3), 163–166.

[24]. Huang, D., Yang, M., Wen, X., Xia, S., & Yuan, B. (2024). AI-driven drug discovery: Accelerating the development of novel therapeutics in biopharmaceuticals. Journal of Knowledge Learning and Science Technology, 3(3), Article 3. https: //doi.org/10.60087/jklst.vol3.n3.p.206-224

[25]. Saesen, R., Lacombe, D., & Huys, I. (2023). Real-world data in oncology: A questionnaire-based analysis of the academic research landscape examining the policies and experiences of the cancer cooperative groups. ESMO Open, 8(2), 100878. https: //doi.org/10.1016/j.esmoop.2023.100878

[26]. Modi, S., Glass, B., Prakash, A., Taylor-Weiner, A., Elliott, H., Wapinski, I., Sugihara, M., Saito, K., Kerner, J. K., Phillips, R., Shibutani, T., Honda, K., Khosla, A., Beck, A. H., & Cogswell, J. (2020). 286P Artificial intelligence analysis of advanced breast cancer patients from a phase I trial of trastuzumab deruxtecan (T-DxD): HER2 and histopathology features as predictors of clinical benefit. Annals of Oncology, 31(suppl_4), S355–S356. https: //doi.org/10.1016/j.annonc.2020.08.388

[27]. van der Wal, D., Jhun, I., Laklouk, I., Nirschl, J., Richer, L., Rojansky, R., Theparee, T., Wheeler, J., Sander, J., Feng, F., Mohamad, O., Savarese, S., Socher, R., & Esteva, A. (2021). Biological data annotation via a human-augmenting AI-based labeling system. NPJ Digital Medicine, 4(1), 1–7. https: //doi.org/10.1038/s41746-021-00520-6

[28]. Teli, J. S., Rai, A., & Lin, Y.-K. (2024). Abnormal returns to artificial intelligence patent infringement litigations. Journal of Management Information Systems, 41(2), 422–452. https: //doi.org/10.1080/07421222.2024.2340826

[29]. Dentamaro, V., Impedovo, D., Musti, L., Pirlo, G., & Taurisano, P. (2024). Enhancing early Parkinson’s disease detection through multimodal deep learning and explainable AI: Insights from the PPMI database. Scientific Reports, 14(1), 20941. https: //doi.org/10.1038/s41598-024-70165-4

Cite this article

Xu,N. (2025). Research Progress on Antibody Drug Development under the Guidance of Artificial Intelligence. Theoretical and Natural Science,126,10-15.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

About volume

Volume title: Proceedings of ICBioMed 2025 Symposium: AI for Healthcare: Advanced Medical Data Analytics and Smart Rehabilitation

ISBN: 978-1-80590-265-2(Print) / 978-1-80590-266-9(Online)
Editor: Alan Wang
Conference date: 17 October 2025
Series: Theoretical and Natural Science
Volume number: Vol.126
ISSN: 2753-8818(Print) / 2753-8826(Online)