References
[1]. Iino, R., Kinbara, K., & Bryant, Z. (2020). Introduction: Molecular Motors. Chemical Reviews, 120(1), 1–4. https: //doi.org/10.1021/acs.chemrev.9b00819
[2]. Seifert, U. (2012). Stochastic thermodynamics, fluctuation theorems and molecular machines. Reports on Progress in Physics, 75(12), 126001. https: //doi.org/10.1088/0034-4885/75/12/126001
[3]. Astumian, R. D. (2010). Thermodynamics and Kinetics of Molecular Motors. Biophysical Journal, 98(11), 2401–2409. https: //doi.org/10.1016/j.bpj.2010.02.040
[4]. Gennerich, A., & Vale, R. D. (2009). Walking the walk: how kinesin and dynein coordinate their steps. Current Opinion in Cell Biology, 21(1), 59–67. https: //doi.org/10.1016/j.ceb.2008.12.002
[5]. Brown, A. I., & Sivak, D. A. (2020). Theory of Nonequilibrium Free Energy Transduction by Molecular Machines. Chemical Reviews, 120(1), 434–459.
[6]. Li, C.-B., & Toyabe, S. (2020). Efficiencies of molecular motors: a comprehensible overview. Biophysical Reviews, 12(2), 419–423. https: //doi.org/10.1007/s12551-020-00672-x
[7]. Pietzonka, P., & Seifert, U. (2018). Universal Trade-Off between Power, Efficiency, and Constancy in Steady-State Heat Engines. Physical Review Letters, 120(19). https: //doi.org/10.1103/physrevlett.120.190602
[8]. Bustamante, C., Cheng, W., & Mejia, Y. X. (2011). Revisiting the Central Dogma One Molecule at a Time. Cell, 144(4), 480–497. https: //doi.org/10.1016/j.cell.2011.01.033
[9]. Derrington, I. M., et al. (2015). Subangstrom single-molecule measurements of motor proteins using a nanopore. Nature Biotechnology, 33(10), 1073–1075. https: //doi.org/10.1038/nbt.3357