References
[1]. Bayer C, Friz P, Gatheral J. Pricing under rough volatility [J]. Quantitative Finance, 2016, 16(6): 887-904.
[2]. Wilmott P, Howison S, Dewynne J. The mathematics of financial derivatives: a student introduction [M]. Cambridge university press, 1995.
[3]. Lipton A. Mathematical methods for foreign exchange: A financial engineer's approach [M]. World Scientific, 2001.
[4]. LeCun Y, Bengio Y, Hinton G. Deep learning [J]. nature, 2015, 521(7553): 436-444.
[5]. Cox, J. Notes on Option Pricing I: Constant Elasticity of Diffusions. Unpublished draft, Stanford University, 1975.
[6]. S.L.Heston. A closed-form solution for options with stochastic volatility with applications to bond and currency options. The review of financial studies, 6(2): 327{343, 1993}.
[7]. Jichao Zhao, Matt Davison, Robert M. Corless Compact finite difference method for American option pricing, Journal of Computational and Applied Mathematics, 206, 2007, 306-321.
[8]. Bayer C, Horvath B, Muguruza A, et al. On deep pricing and calibration of (rough) stochastic volatility models [J]. Preprint.
[9]. Horvath B, Muguruza A, Tomas M. Deep learning volatility [J]. arXiv preprint arXiv: 1901.09647, 2019.
[10]. Hornik K, Stinchcombe M, White H. Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks [J]. Neural networks, 1990, 3(5): 551-560.
[11]. Emanuel D C, MacBeth J D. Further results on the constant elasticity of variance call option pricing model [J]. Journal of Financial and Quantitative Analysis, 1982, 17(4): 533-554.
[12]. Schroder.M, Computing the constant elasticity of variance option pricing formula, Journal of Finance, 1989: 44, Mar., 211-219.
[13]. Gatheral, J., The Volatility Surface: A Practitioners Guide, 2006, NewYork, NY: John Wiley & Sons.