References
[1]. Hdidouan, D., & Staffell, I. (2017). The impact of climate change on the levelised cost of wind energy. Renewable Energy, 101, 575-592.
[2]. Niu, S., Zhang, Z., Ke, X., Zhang, G., Huo, C., & Qin, B. (2022). Impact of renewable energy penetration rate on power system transient voltage stability. *Energy Reports, 8, 487-492.
[3]. Burke, DJ, & O'Malley, MJ (2011). Factors influencing wind energy curtailment. IEEE Transactions on Sustainable Energy, 2(2), 185-193.
[4]. Tawn, R., & Browell, J. (2022). A review of very short-term wind and solar power forecasting. Renewable and Sustainable Energy Reviews, 153, 111758.
[5]. Monteiro, C., Bessa, R., Miranda, V., Botterud, A., Wang, J., & Conzelmann, G. (2009). Wind power forecasting: state-of-the-art 2009*. Argonne National Laboratory (ANL).
[6]. Chen, Y., & Folly, KA (2018). Wind power forecasting. IFAC- PapersOnLine, 51(28), 414-419.
[7]. Li L, Liu Yq, Yang Yp, Shuang H, Wang Ym. A physical approach of the shortterm wind power prediction based on CFD pre-calculated flow fields. J Hydrodyn Ser B 2013; 25(1): 56–61.
[8]. Foley AM, Leahy PG, Marvuglia A, McKeogh EJ. Current methods and advances in forecasting of wind power generation. Renew Energy 2012; 37(1): 1–8.
[9]. Eldali FA, Hansen TM, Suryanarayanan S, Chong EK. Employing ARIMA models to improve wind power forecasts: A case study in ERCOT. In: 2016 North American power symposium. NAPS, IEEE; 2016, p. 1–6.
[10]. Kavasseri RG, Seetharaman K. Day-ahead wind speed forecasting using f-ARIMA models. Renew Energy 2009; 34(5): 1388–93.
[11]. Hour-ahead wind power forecast based on random forests. Renew Energy 2017; 109: 529–41.
[12]. Shi K, Qiao Y, Zhao W, Wang Q, Liu M, Lu Z. An improved random forest model of short-term wind-power forecasting to enhance accuracy, efficiency, and robustness. Wind Energy 2018; 21(12): 1383–94.
[13]. Dowell J, Pinson P. Very-short-term probabilistic wind power forecasts by sparse vector autoregression. IEEE Trans Smart Grid 2015; 7(2): 763–70.
[14]. Zhao Y, Ye L, Pinson P, Tang Y, Lu P. Correlation-constrained and sparsity-controlled vector autoregressive model for spatio -temporal wind power forecasting. IEEE Trans Power Syst 2018; 33(5): 5029–40.
[15]. Application of support vector machine models for forecasting solar and wind energy resources: A review. J Clean Prod 2018; 199: 272–85.
[16]. Jiang Y, Huang G. Short-term wind speed prediction: Hybrid of ensemble empirical mode decomposition, feature selection and error correction. Energy Convers Manage 2017; 144: 340–50.