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Accurate long-term wind power forecasting is crucial for ensuring stable power
system operation and promoting renewable energy integration. However, existing
forecasting models are often limited in their performance when processing wind power
series due to inherent no stationarity and noise. They also face challenges such as inefficient
modeling of long-sequence context and insufficient ability to capture long-term
dependencies. To address these issues, this paper proposes a hybrid forecasting framework
based on variational mode decomposition (VMD) and block-wise temporal attention (Time
Attention). First, VMD is used to decompose the original highly volatile power series into a
series of stationary and more regular intrinsic mode components (IMFs), effectively
suppressing noise and reducing modeling complexity. Furthermore, a sequence-wise block-
wise strategy is introduced to convert long series into local block token inputs, thus
overcoming the context length limitations of traditional Transformers and enhancing the
model's ability to capture long-term trends. Finally, a novel Time Attention mechanism is
designed to explicitly model intra-module temporal dynamics and inter-modal correlations
through hierarchical masks, enabling deeper feature extraction. To validate the effectiveness
of the proposed framework, we conduct a comprehensive comparison with 12 mainstream
baseline models on two public datasets. Experimental results show that in the task of
predicting the next 96 time steps on Dataset 1, the mean squared error (MSE) of our model
is reduced by 27.7% compared to the second-best Informer model, fully demonstrating the
excellent capabilities and application potential of this framework in improving the accuracy
and robustness of long-term wind power forecasting.

wind power forecasting, long-term forecasting, hybrid model, data
decomposition, deep learning

Currently, addressing climate change and ensuring energy security have become core global issues.
Against this backdrop, clean and renewable energy, represented by wind energy, is developing at an
unprecedented rate, driving profound changes in the global energy system [1]. Wind power
generation has become the main force in renewable energy generation due to its abundant resources,
mature technology, and environmental friendliness. However, large-scale wind power grid
integration also poses severe challenges to the planning, scheduling, and operation of power systems

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

36



Proceedings of CONF-SPML 2026 Symposium: The 2nd Neural Computing and Applications Workshop 2025
DOI: 10.54254/2755-2721/2026.TJ29826

[2,3]. Wind, as a manifestation of atmospheric flow, is affected by a variety of complex factors such
as topography, climate, temperature, and air pressure, resulting in strong randomness, volatility, and
intermittency in wind speed and direction. This uncertainty is directly transmitted to the output
power of wind turbines, making wind power an unstable power source and posing a potential threat
to grid frequency regulation, voltage stability, backup capacity configuration, and the fairness of
power market transactions [4,5].

To meet these challenges and achieve efficient and reliable utilization of wind energy resources, it
is particularly important to accurately predict wind power. According to the prediction time scale,
wind power prediction can be divided into four categories: long-term, medium-term, short-term and
ultra-short-term [6]. Among them, medium- and long-term predictions (especially predictions for the
next 24—72 hours) are of great practical significance and are directly related to the power system's
power generation plan formulation, grid operation mode arrangement, ancillary service market
decision-making and electricity spot market quotation strategy [7]. An accurate long-term prediction
system can effectively reduce the system backup cost caused by wind power uncertainty, reduce
wind curtailment and power rationing, and improve the safety and economy of grid operation [8].

Traditional wind power prediction methods are mainly divided into physical methods and
statistical methods. The physical method uses numerical weather forecast data and geographical
features to convert meteorological data into wind speed and direction at the turbine hub height, and
then estimates the power output through the power-wind speed curve [8,9]. This method does not
rely on a large amount of historical data and is suitable for new wind farms. However, its prediction
accuracy is heavily dependent on the quality of NWP data, and the modeling is complex, time-
consuming and costly [10].

With the advancement of artificial intelligence, neural networks such as multilayer perceptron’s,
convolutional neural networks, and temporal convolutional networks have been introduced to the
field of wind power forecasting, driving technological innovation in this area. In particular, RNN-
based models (such as LSTM and GRU) have attracted considerable attention due to their
exceptional ability to capture temporal dependencies. In recent years, the Transformer, leveraging its
self-attention mechanism to capture global temporal dependencies, has become a key tool for time
series forecasting. However, existing Transformer-based models still face the challenge of limited
context length when processing long-term wind power series. Unlike Transformers in natural
language and vision tasks, which can process thousands to millions of tokens, time series
Transformers typically operate within a limited context of only a few hundred-time steps, resulting
in insufficient learning of global trends and difficulty in effectively addressing non-stationarity.
Furthermore, the importance of explicitly capturing both intra- and inter-channel dependencies in
multivariate forecasting has become increasingly prominent, making it imperative to expand the
context length to encompass more relevant time series.

In this following, this paper introduces a blocking operation to divide the original sequence into
local segments to expand contextual information and improve the information integrity of the
Transformer. To address the noise problem in the training data, the VMD module is used to
compress the signal energy distribution in the frequency domain to reduce the impact of noise. The
Time Attention mechanism is further proposed. This mechanism is designed for multidimensional
time series, has position-aware capabilities, can simultaneously model intra-sequence and inter-
sequence dependencies, and maintain the causality and scalability of the Transformer.
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2. Time attention transformer prediction method
2.1. Prediction method framework

The overall framework proposed in this paper first performs preprocessing operations such as
missing value filling and standardization on historical data containing complex periodicity and high
volatility. It then adopts a "decomposition-forecasting" strategy, using VMD to decompose the
original time series into multiple intrinsic mode components that are easier to model. After block
partitioning and filtering, the components are input into an improved Transformer model for
training. Finally, the accuracy and effectiveness of the forecasting framework are fully verified by
visually comparing the forecast results with the true values and quantitatively evaluating them using
metrics such as root mean square error, mean absolute error, and mean square error. The specific
process is shown in Figure 1.
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Figure 1. Overall research framework

2.2. VMD signal decomposition

Variational mode decomposition (VMD), a non-recursive signal decomposition method with a solid
mathematical foundation, has garnered widespread attention in recent years. VMD frames the signal
decomposition process as a constrained variational problem, aiming to find a set of modal
components with specific center frequencies whose sum of bandwidths minimizes while accurately
reconstructing the original signal. Compared to empirical mode decomposition (EMD) and its
variants, VMD performs better in suppressing modal aliasing and improving robustness. This paper
uses VMD to decompose long-term wind power data. The detailed process is shown in Figure 2.
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Figure 2. VMD algorithm flow

The essence of VMD is an iterative optimization process that aims to decompose an original
signal into a preset number (K) of intrinsic mode functions (IMFs) with specific center frequencies.
Its core iterative update process mainly includes the following three formulas:

In the (n+1)th iteration, the frequency domain representation of the kth modal component is
updated according to the following formula. This update is implemented in the frequency domain
using a Wiener filter to extract the components around the center frequency from the current residual
signal. The specific formula is as follows:

Aw)
2

~n+1

~n+1 _ BW) =i Uy (W) =ik Uy (w)+
Uk (w) - 1+2a(w7w2”)2

(1)
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Among them, refers to the W™ (w) kth mode obtained after this iterative update;

X () Refers to the Fourier transform of the original signal;
> T (@) Refers to other modalities that have been updated in this iteration;
Y i~k Ui (w) Refers to other modes obtained in the previous iteration;

AR (w) Refers to the Lagrange multiplier of the previous iteration, which is used to constrain the
sum of all modes to be equal to the original signal;

o A quadratic penalty factor, which controls the strictness of the constraint;

o} kth mode obtained in the previous iteration.

After updating the modal component, its center frequency needs to be recalculated to locate the

place where the modal energy is most concentrated. This process is equivalent to calculating the
center of gravity of the modal power spectrum. The specific formula is as follows:

~ 2
n+1 _ o @@ ()| dw

W' = 2
k Sy a7 @) e @

This formula calculates the center of the power spectrum of the updated mode.

all K modes and their center frequencies are updated, the Lagrange multipliers need to be updated
to better enforce the constraint that the sum of all modes is equal to the original signal in the next
iteration.

A (W) = A (w) + 7 ( (W) — Spart (w) 3)

Among them, T : dual ascent step size (or called update parameter), which affects the
convergence speed;
% (@) — 3 U2 (@) : This is the residual between the sum of all current modes and the original

signal (i.e., reconstruction error). The purpose of the update is to reduce this residual in the next
iteration.

After segmenting wind power information, we constructed a causal model architecture based on a
decoder-only Transformer to achieve unified prediction of heterogeneous time series tasks. The core
of this architecture is to abandon the traditional global prediction paradigm and instead generalize
the multi-dimensional time series prediction problem into a long-context next prediction task.

At the input representation layer of the model, after the original time series is tokenized into
blocks, each token is first mapped to a high-dimensional feature space through an independent
embedding matrix. This process can be expressed as:

h = Wei (4)

To enable the model to perceive multidimensional data structures, we further introduce composite
positional encoding: in the time dimension, rotated position embedding is used to inject temporal
information; in the variable dimension, two learnable scalar parameters are used to distinguish
between endogenous and exogenous information sources, thereby ensuring equivalence of the
model's permutation order for variable input. The processed token representation sequence is then
fed into a core network consisting of L identical stacked blocks for deep feature extraction. Each
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block contains a standard feedforward network and a TimeAttention mechanism, both connected by
residual connections and layer normalization.

The key to TimeAttention lies in precisely controlling the flow of information through a
hierarchical mask. This mask is generated by a Kronecker product (®) between a variable
dependency mask (C) that defines the dependencies between variables and a temporal causal mask
(T) that ensures temporal causality. This mask is combined with the original attention score matrix
that includes position information to form the final attention calculation formula:

TimeAttention (H) = Softmaz (%W )H W, Q)
k

After L layers of processing, the model maps the final feature representation back to the

prediction space through a token-level linear projection layer, generates a predicted value for the

next token for each input position, and finally optimizes the model by minimizing the mean squared

error between all predicted tokens and the true value. The internal specific process is shown in

Figure 4:
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Figure 4. Improved Transformer internal framework diagram
3. Numerical results
3.1. Dataset preprocessing

To demonstrate the versatility of the model, this study used two different types of datasets for
training and validation.

Dataset 1 is a univariate dataset with high temporal resolution. It accurately records the
continuous wind power output within a specific region at a sampling interval of 15 minutes. The
data is derived from actual grid operation records of four German transmission system operators,
comprising one year's worth of data from each operator. This dataset is currently publicly available
on Kaggle. The core characteristic of this dataset lies in its univariate nature: all observations
collectively describe the dynamic evolution of a single physical quantity, wind power, over time.
This time series typifies the inherent multi-scale periodicity of wind power generation, as well as the
high degree of randomness and volatility caused by wind speed uncertainty.
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Wind Power Generation Time Series

Figure 5. Overall data display of dataset 1
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Figure 7. Daily data trends of dataset 1
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Figure 8. 1VMD decomposition of the original dataset

Figure 5 shows that the time series exhibits significant nonstationarity, with strong random
fluctuations and clear periodic patterns. Figures 6 and 7 further confirm this, showing that the series
can be clearly decomposed into three components: trend, seasonality, and residual. The trend term
reveals the long-term variation of the data over the entire observation period, while the seasonal
term reveals highly regular periodic patterns on a daily or weekly basis, consistent with the natural
intra-day and seasonal variations in wind energy resources. The residual term represents the random
noise component in the data. Figure 6 shows that the autocorrelation coefficient decays slowly with
increasing lag order, exhibiting a significant tailing phenomenon, a typical characteristic of strong
trend or seasonality in nonstationary time series. Furthermore, Figure 7 demonstrates rapid
truncation. After lag one, the partial autocorrelation coefficient quickly falls within the confidence
interval, indicating that the power value at the current moment is highly dependent on the value at
the immediately preceding moment. Therefore, when constructing a prediction model for dataset 1,
these complex dynamic characteristics must be fully considered and properly handled, such as
through differencing, seasonal decomposition, or the use of algorithms that can directly model these
characteristics to ensure the accuracy of the prediction.

Dataset 2 is a multivariate dataset derived from time series data from wind turbine sites at four
different locations. This dataset is currently publicly available on Kaggle. This dataset details key
meteorological indicators that influence wind power generation and the actual power output of the
turbines. Data from each site include multiple physical quantities measured at different altitudes.
Core indicators include temperature, relative humidity, dew point, and wind speed, wind gusts, and
wind direction, which are crucial for power prediction. The target predictor variable is power, with
standardized units. The data has an hourly granularity and covers a continuous observation period
starting in early 2017. After integrating data from all four sites, the dataset contains a large number
of continuous observation time steps, providing a rich data sample for training deep learning
models. To construct a high-quality training set suitable for model use, we performed necessary
preprocessing on the raw data and conducted correlation analysis on the various data points in the
dataset. The results are shown in the figure below:
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Figure 9. Heat map of original dataset analysis for dataset 2
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Figure 10. Rose diagram of wind direction and average power in dataset 2
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Figure 11. 3D joint analysis diagram of dataset 2

To build an efficient and relevant prediction model, we first analyzed the correlation between
various meteorological features and the target variable, power generation, as shown in the feature
correlation heat map. This analysis revealed a strong positive correlation between wind speed and
power generation, making it the most significant driver of power output. In contrast, other
meteorological variables such as temperature and air pressure also showed some correlation, but
their impact was far less significant than that of wind speed. Based on this finding, this experiment
focused on these highly correlated variables and constructed an input feature set to reduce model
complexity and mitigate noise introduced by irrelevant variables.

Figure 10 reveals its inherent high volatility and intermittency, with power values fluctuating
dramatically over short periods of time. A 3D joint analysis of the key input features, wind speed
and generated power, further intuitively confirms the strong dependency between the two. Their
distribution exhibits the typical characteristics of a wind turbine power curve: between the cut-in
wind speed and the rated wind speed, power rises sharply with increasing wind speed before
leveling off. This clear nonlinear relationship is the key basis for building an accurate prediction
model. A comprehensive analysis of the temporal variations and correlations of each input feature
established a modeling strategy centered on wind speed, supplemented by other highly correlated
meteorological factors. This strategy aims to fully utilize the most effective information to capture
and predict the dynamic changes in wind power.

After the analysis is completed, as described above, the four most correlated data sets (Power,
windspeed 100m, windspeed 10m, and windgusts 10m) are selected and VMD decomposition is
performed on the data into 20 modal data. This ultimately forms a new dataset, which provides a
solid foundation for subsequent model learning and evaluation on multivariate and long time series
dependencies.
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Figure 12. VMD decomposition diagram of the newly created dataset 2
3.2. Evaluation method

To objectively measure and compare the performance of different forecasting models, a set of
standardized evaluation metrics is required. These metrics quantify the deviation between the
predicted and true values from different perspectives and are important tools for verifying model
effectiveness. In wind power forecasting, the most commonly used metrics include mean absolute
error (MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE). MAE,
by calculating the average of the absolute values of the forecast errors, intuitively reflects the
average deviation of the forecast results, using the same units as the original data.

MSE = - 330, (9: — vi)? (6)
MAE = 2 ™% 19 — i (7)
RMSE = /152 (3 - v)? (8)

MAE is the average of the absolute errors of all individual observations. It directly reflects the
average size of the model's prediction errors. Unlike MAE, MSE amplifies the impact of larger
errors on the overall error by squaring the errors. This means that MSE is very sensitive to outliers
in the model's predictions. If the model exhibits significant deviations at certain points, the MSE
value will increase significantly. RMSE is one of the most widely used regression model evaluation
metrics. By taking the square root of the MSE, the units of the RMSE are restored to match those of
the original data, thus resolving the issue of the MSE's difficulty in interpreting the numerical value.
Like MSE, RMSE also places greater weight on larger prediction errors, making it equally sensitive
to outliers. The RMSE value can be intuitively understood as the average "distance" or "deviation"
between the model's predictions and the true values.

In summary, MAE provides a direct measure of the average error, while MSE and RMSE focus
more on penalizing larger errors. In model evaluation, we usually refer to these three indicators
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simultaneously to comprehensively and objectively evaluate the predictive performance and stability
of the model.

3.3. Results analysis

This section systematically presents and analyzes the results of various experiments, including main
experimental comparisons with baseline models and ablation experiments to verify the effectiveness
of each component of the model.

3.3.1. Comparative results

To comprehensively evaluate the effectiveness of the proposed model, we conducted a series of
exhaustive experiments on two public datasets and compared its performance with 12 mainstream
baseline models, including advanced attention-based models such as the Transformer, Informer, and
Autoformer, as well as classic LSTM and MLP models. The experimental results were evaluated
using mean squared error, mean absolute error, and root mean squared error. The results are shown
in Table X.

Based on all experimental results, the model proposed in this paper shows the best performance
under all test conditions, significantly surpassing all benchmark models. The specific results are
shown in the figure below:

S 48 - Comblned Metrics (SheetS) BRI 96 - Combined Metrics (SheetS)

Figure 13. Radar chart of dataset 1 results

FIMILS 192 - Combined Metrics (Sheets) Average - Combined Metris (shests)

Figure 14. Radar chart of dataset 1 results
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Figure 16. Radar chart of dataset 2 results

Across all datasets and prediction lengths tested, our model achieved the lowest or second-lowest
error metrics. Taking the experimental data in Table 4 of "Dataset 1" as an example, the model
achieved the best average mean squared error (MSE), mean absolute error (MAE), and root mean
squared error (RMSE) across all prediction lengths, reaching 0.568, 0.601, and 0.689, respectively.
Within specific prediction tasks, the model's strengths varied across scenarios: For short-term tasks
with a prediction length of 48, it achieved the lowest mean squared error (MSE) of 0.448. Its
advantage was most pronounced for the most challenging long-term tasks with a prediction length of
192, achieving the best MSE, MAE, and RMSE of 0.689, 0.630, and 0.735, respectively. For
medium-term tasks with a prediction length of 96, although the VMD-LSTM-Attention model
achieved the lowest MSE, our model achieved the best RMSE and MAE, demonstrating its
superiority in controlling extreme errors.

Furthermore, the advantages of this model are not limited to specific scenarios, but are consistent
across all evaluation dimensions. Whether it is short-term prediction or the more challenging long-
term prediction, the model in this paper can maintain the lowest error rate. For example, in the long-
term prediction task with a prediction length of 192 in "Dataset 2", the RMSE of this model is 0.728,
which is significantly lower than all other comparison models, demonstrating its stability and
robustness in long-term prediction tasks. By verifying on two datasets with different characteristics,
the model in this paper always maintains a leading position, which strongly demonstrates its strong
generalization ability and adaptability to long-term wind power data. From the average performance

49



Proceedings of CONF-SPML 2026 Symposium: The 2nd Neural Computing and Applications Workshop 2025
DOI: 10.54254/2755-2721/2026.TJ29826

of the experiment, the average error value of the model in this paper is significantly lower than that
of all baseline models, among which the closest Informer model has an average error of 0.672.
Multi-dimensional visualizations of the experimental results provide a comprehensive perspective
for evaluating model performance. For all models, forecast errors systematically increase with
increasing forecast length. This trend aligns with the fundamental principle of increasing uncertainty
in time series forecasting, thereby validating the overall experimental framework. Within this
framework, visualizations such as performance heatmaps and three-dimensional bar charts
consistently demonstrate that the proposed model outperforms all baseline models. Specifically, the
model achieves the lowest error across all twelve test scenarios, with its leading performance
highlighted in the charts. This consistent performance across multiple scenarios demonstrates that
the model's performance improvement is robust and consistent, not limited to specific evaluation
criteria. These detailed and consistent visualizations demonstrate, from multiple perspectives, that
the proposed model achieves superior forecast accuracy and robustness compared to the baselines.

3.3.2. Result analysis

To further verify the effectiveness and performance of the proposed wind power prediction model,
this section provides a detailed analysis of the model's experimental results on a test set separated
from the two datasets mentioned above. Typical prediction results are shown in Figures 18 and 19.
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Figure 18. Prediction results of dataset 1
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Figure 19. Prediction results of dataset 2

As can be clearly seen in Figure 18, the model demonstrates excellent univariate time series
forecasting performance on a univariate wind power dataset. Driven solely by historical data, the
model's forecast curves closely match the future true values, successfully reproducing future power
trends with high fidelity across the three key dimensions of phase, amplitude, and waveform. This
outstanding performance not only validates the model's strong generalization capabilities on a novel
dataset but, more importantly, demonstrates its ability to uncover profound dynamic dependencies
solely from the sequence itself. Even under complex operating conditions with weaker periodicity
and greater randomness, the model maintains robust forecasting performance, demonstrating its
strong robustness.

Figure 19 clearly shows that the power curves predicted by this model and the observed power
curves for multivariate wind power data show a high degree of goodness of fit overall. The
fluctuation trends, amplitudes, and phases of the two curves are largely consistent, intuitively
demonstrating the proposed model's powerful nonlinear mapping capabilities and high-precision
prediction performance. Even in regions where wind power exhibits significant fluctuations and
strong randomness, the model still provides reliable predictions.
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Figure 20. Prediction results of dataset 2

Figure 20 shows a scatter plot of the correlation between the predicted values and the true values
for the 20 input features of the proposed model. In each subplot, the diagonal line represents an
ideal, error-free, perfect prediction. Therefore, the distribution of the data point cloud can intuitively
reflect the model's predictive performance for the corresponding feature. The more closely the point
cloud is linearly distributed around the diagonal line, the higher the prediction accuracy; conversely,
the more diffuse the point cloud is, the worse the prediction performance. A comprehensive analysis
of all subplots reveals that the most striking conclusion is that this model is not a simple,
homogeneous predictor, but rather a highly intelligent differential learning system. It accurately
identifies the signal-to-noise ratio and regularity of different features and adjusts its prediction
strategy accordingly, achieving high-fidelity reproduction for "predictable" features and providing
valuable trend analysis for "highly random" features.

The above experimental results show that this model performs well in three key aspects in
multivariate data:

Accurate trend tracking: The model's predictions quickly and accurately tracked the actual power
values during rapid power increases, high-level plateaus, and rapid power decreases. This
demonstrates that the model successfully learned the deep connection between the key external
factors driving power changes and output power, rather than simply lagging behind and mimicking
it.
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Effectively learning cyclical patterns: The model effectively captures the cyclical patterns
inherent in the wind power series. The peaks and troughs of the predicted curve coincide closely
with the actual curve, accurately reproducing the fluctuations in wind power. This demonstrates that
the model successfully exploits the inherent temporal dependencies of time series data, making its
forecasts highly forward-looking.

Excellent adaptability to operating conditions: In the latter part of Figure 2.5-1, the wind farm's
operating conditions change significantly, with power output switching from a highly fluctuating
state to a sustained low power output. At this critical transition point, the model demonstrates
exceptional adaptability. It keenly identifies this fundamental shift in system conditions and rapidly
adjusts the predicted output to a low range consistent with actual conditions, maintaining a
consistently low prediction error. This performance demonstrates not only the model's excellent
predictive capabilities for typical fluctuations but also its high robustness and environmental
adaptability to sudden changes in system operating modes.

In summary, a systematic analysis of the experimental results demonstrates that the proposed
wind power prediction model excels in overall performance, trend tracking, periodicity capture, and
adaptability to operating conditions. The high sensitivity and high resolution exhibited by the
model's predictions further demonstrate its advanced nature and practical potential. These
experimental results strongly demonstrate the effectiveness of this research method, which can
provide reliable technical support for the stable operation of wind farms and intelligent grid
scheduling.

To address the bottlenecks encountered by existing models in processing long-term wind power
forecasting due to sequence non-stationarity, noise interference, and the long-term sequence
processing, this paper proposes a hybrid forecasting model based on variational mode
decomposition, sequence block and improved Transformer architecture. The main work and core
conclusions of this study are summarized as follows:

(1) An innovative hybrid prediction framework is proposed. This paper constructs a new
paradigm of "decomposition-blocking-prediction". First, VMD is used to decompose the complex
original wind power sequence into multiple more stable and regular intrinsic mode components,
effectively reducing the negative impact of noise interference and non-stationarity on model
learning. Subsequently, sequence block technology is introduced to convert long sequences into
localized blocks, successfully solving the computational efficiency and context length limitations of
traditional Transformer when processing long time series.

TimeAttention mechanism specifically for time series is designed. To address the limitations of
the standard self-attention mechanism on multi-dimensional time series data, this paper designs and
implements a novel TimeAttention mechanism. This mechanism, through a unique hierarchical
mask, can simultaneously and efficiently capture the dependencies within time steps and the
correlations between different variables/modalities, significantly enhancing the model's ability to
model the dynamic characteristics of complex time series.

(3) The model's performance has been fully verified. Through extensive comparative experiments
on two public datasets with different characteristics (univariate and multivariate), the proposed
model significantly outperforms ARIMA, LSTM, standard Transformer, and its various advanced
variants in all prediction lengths and evaluation metrics, demonstrating its absolute superiority in
prediction accuracy. Detailed ablation experiments further demonstrate that the three core
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components, VMD, Patching, and TimeAttention, all make indispensable contributions to the
model's final performance, verifying the rationality and advancement of the model design.
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