Environmental Factors Shaping Microbial Biodegradation of Marine Microplastics
Research Article
Open Access
CC BY

Environmental Factors Shaping Microbial Biodegradation of Marine Microplastics

Zibo Wang 1* Mingxuan Zhang 2
1 Nanjing Foreign Language School, Nanjing, 210022, China
2 Northeast Yucai Foreign Language School, Shenyang, 110000, China
*Corresponding author: zibowang2008@outlook.com
Published on 11 November 2025
Journal Cover
ACE Vol.205
ISSN (Print): 2755-273X
ISSN (Online): 2755-2721
ISBN (Print): 978-1-80590-521-9
ISBN (Online): 978-1-80590-522-6
Download Cover

Abstract

Marine microplastics have become a major challenge to the global marine environment because of their persistence and widespread distribution. Polyethylene (PE) and polyethylene terephthalate (PET), as the two most widely used and frequently detected polymers, exhibit markedly different biodegradation potentials due to their distinct chemical properties. This review systematically summarizes the microbial degradation mechanisms of PE and PET, including surface biofilm formation, key enzymatic reactions, aerobic and anaerobic metabolic pathways, and the synergistic effects of abiotic weathering with biological processes. Building on this, the review further analyzes how marine environmental factors—temperature, pressure, light, oxygen, salinity, and nutrient supply—affect microbial degradation efficiency, with a particular focus on the contrasts between shallow and deep-sea systems. The findings indicate that temperature and oxygen availability are the primary limiting factors for plastic degradation in deep-sea environments, while high pressure, nutrient scarcity, and lack of light further constrain microbial metabolic activity. By integrating current research, this review highlights the central role of environmental drivers in shaping microplastic degradation, providing a theoretical foundation to better understand and enhance microbial degradation in marine ecosystems.

Keywords:

microbial biodegradation, microplastics, marine, environmental factors

View PDF
Wang,Z.;Zhang,M. (2025). Environmental Factors Shaping Microbial Biodegradation of Marine Microplastics. Applied and Computational Engineering,205,28-38.

References

[1]. Kane, I.A.; Clare, M.A.; Miramontes, E.; et al. Seafloor microplastic hotspots controlled by deep-sea circulation. Science 2020, 368, 1140–1145.

[2]. Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; et al. Lost at sea: Where is all the plastic? Science 2004, 304, 838.

[3]. PlasticsEurope. Plastics – the Facts 2024; Brussels, 2024.

[4]. Jambeck, J.R.; Geyer, R.; Wilcox, C.; et al. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771.

[5]. Lebreton, L.C.M.; Andrady, A. Future scenarios of global plastic waste generation. Palgrave Commun. 2019, 5, 6.

[6]. Song, Y.K.; Hong, S.H.; Jang, M.; et al. Large accumulation of micro-sized polymer particles in the sea surface microlayer. Environ. Sci. Technol. 2014, 48, 9014–9021.

[7]. Holmes, L.A.; Turner, A.; Thompson, R.C. Adsorption of trace metals to plastic pellets. Environ. Pollut. 2012, 160, 42–48.

[8]. Rochman, C.M.; Hoh, E.; Hentschel, B.T.; Kaye, S. Sorption of organic contaminants to plastic pellets. Environ. Sci. Technol. 2013, 47, 1646–1654.

[9]. Urbanek, A.K.; Rymowicz, W.; Mirończuk, A.M. Degradation of plastics in cold marine habitats. Appl. Microbiol. Biotechnol. 2018, 102, 7669–7678.

[10]. Jacquin, J.; Cheng, J.; Odobel, C.; et al. Microbial ecotoxicology of the plastisphere. Front. Microbiol. 2019, 10, 865.

[11]. Syranidou, E.; Karkanorachaki, K.; Amorotti, F.; et al. Biodegradation of plastic films by marine consortia. J. Hazard. Mater. 2019, 375, 33–42.

[12]. Sun, C.; et al. Research progress on sources, distribution and ecological environment impact of microplastics in the ocean. Adv. Mar. Sci. 2016, 34(4), 449–456.

[13]. Kalathil, S.; Miller, M.; Reisner, E. Microbial fermentation of polyethylene terephthalate (PET) plastic waste for the production of chemicals or electricity. Angew. Chem. Int. Ed. 2022, 61(45), e202211057.

[14]. Loll-Krippleber, R.; Sajtovich, V.A.; Ferguson, M.W.; Ho, B.; Burns, A.R.; Payliss, B.J.; et al. Development of a yeast whole-cell biocatalyst for MHET conversion into terephthalic acid and ethylene glycol. Microb. Cell Fact. 2022, 21(1), 280.

[15]. Sung, L.P.; Cook, R.; Fan, C.; Li, Y.; Rostampour, S. Changes in the chemical composition of polyethylene terephthalate under UV radiation in various environmental conditions. [Journal?] 2024, (in press).

[16]. Muangchinda, C.; Pinyakong, O. Enrichment of LDPE-degrading bacterial consortia: Community succession and enhanced degradation efficiency through various pretreatment methods. Sci. Rep. 2024, 14(1), 28795.

[17]. Putcha, J.P.; Kitagawa, W. Polyethylene biodegradation by an artificial bacterial consortium: Rhodococcus as a competitive plastisphere species. Microbes Environ. 2024, 39(3), ME24031.

[18]. Qian, Y.; Huang, L.; Yan, P.; Wang, X.; Luo, Y. Biofilms on plastic debris and the microbiome. Microorganisms 2024, 12(7), 1362.

[19]. Soni, N.; Kumarasamy, V.; Gupta, P.; Singh, S.D.K.; Kamaraj, C.; Subramaniyan, V.; et al. Enhancement of low-density polyethylene biodegradation through the production of surface-active compounds by Pluralibacter gergoviae TYB1. Sci. Rep. 2025, 15(1), 23270.

[20]. Jabloune, R.; Khalil, M.; Moussa, I.E.B.; Simao-Beaunoir, A.M.; Lerat, S.; Brzezinski, R.; Beaulieu, C. Enzymatic degradation of p-nitrophenyl esters, polyethylene terephthalate, cutin, and suberin by Sub1, a suberinase encoded by the plant pathogen Streptomyces scabies. Microbes Environ. 2020, 35(1), ME19086.

[21]. Kawai, F.; Iizuka, R.; Kawabata, T. Engineered polyethylene terephthalate hydrolases: Perspectives and limits. Appl. Microbiol. Biotechnol. 2024, 108(1), 404.

[22]. Yoshida, S.; Hiraga, K.; Takehana, T.; Taniguchi, I.; Yamaji, H.; Maeda, Y.; et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 2016, 351(6278), 1196–1199.

[23]. Joo, S.; Cho, I.J.; Seo, H.; Son, H.F.; Sagong, H.Y.; Shin, T.J.; et al. Structural insight into the molecular mechanism of poly(ethylene terephthalate) degradation. Nat. Commun. 2018, 9, 382.

[24]. Flemming, H.-C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8(9), 623–633.

[25]. Wu, X.; et al. Environmental health and safety implications of the interplay between biofilms and microplastics. Environ. Sci. Technol. Lett. 2024, (online first).

[26]. Stewart, P.S.; Franklin, M.J. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 2008, 6(3), 199–210.

[27]. Shi, X.; Chen, Z.; Wei, W.; Chen, J.; Ni, B.-J. Toxicity of micro/nanoplastics in the environment: Roles of plastisphere and eco-corona. Soil Environ. Health 2023, 1, 100002.

[28]. Debroy, A.; George, N.; Mukherjee, G. Role of biofilms in the degradation of microplastics in aquatic environments. J. Chem. Technol. Biotechnol. 2021, 96(11), 2994–3008.

[29]. Scheffer, G.; Gieg, L.M. The mystery of piezophiles: Understudied microorganisms from the deep, dark subsurface. Microorganisms 2023, 11, 1629.

[30]. Bartlett, D.H. Pressure effects on in vivo microbial processes. Biochim. Biophys. Acta 2002, 1595, 367–381.

[31]. Gewert, B.; Plassmann, M.M.; MacLeod, M. Pathways for degradation of plastic polymers floating in the marine environment. Environ. Sci. Process. Impacts 2015, 17, 1513–1521.

[32]. Jiao, N.; Herndl, G.J.; Hansell, D.A.; et al. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nat. Rev. Microbiol. 2010, 8, 593–599.

[33]. Thauer, R.K.; Jungermann, K.; Decker, K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 1977, 41, 100–180.

[34]. Moraes, J.O.; Albuquerque, L.; Costa, M.S.; Fernandes, A.T. Halophiles and their biomolecules: Recent advances and future perspectives. Mar. Drugs 2020, 18, 534.

[35]. Oren, A. Microbial life at high salt concentrations: Phylogenetic and metabolic diversity. Saline Syst. 2008, 4, 2.

[36]. Dang, H.; Lovell, C.R. Microbial surface colonization and biofilm development in marine environments. Microbiol. Mol. Biol. Rev. 2016, 80, 91–138.

Cite this article

Wang,Z.;Zhang,M. (2025). Environmental Factors Shaping Microbial Biodegradation of Marine Microplastics. Applied and Computational Engineering,205,28-38.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

About volume

Volume title: Proceedings of CONF-MCEE 2026 Symposium: Geomaterials and Environmental Engineering

ISBN: 978-1-80590-521-9(Print) / 978-1-80590-522-6(Online)
Editor: Ömer Burak İSTANBULLU, Manoj Khandelwal
Conference date: 21 January 2026
Series: Applied and Computational Engineering
Volume number: Vol.205
ISSN: 2755-2721(Print) / 2755-273X(Online)