References
[1]. Kane, I.A.; Clare, M.A.; Miramontes, E.; et al. Seafloor microplastic hotspots controlled by deep-sea circulation. Science 2020, 368, 1140–1145.
[2]. Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; et al. Lost at sea: Where is all the plastic? Science 2004, 304, 838.
[3]. PlasticsEurope. Plastics – the Facts 2024; Brussels, 2024.
[4]. Jambeck, J.R.; Geyer, R.; Wilcox, C.; et al. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771.
[5]. Lebreton, L.C.M.; Andrady, A. Future scenarios of global plastic waste generation. Palgrave Commun. 2019, 5, 6.
[6]. Song, Y.K.; Hong, S.H.; Jang, M.; et al. Large accumulation of micro-sized polymer particles in the sea surface microlayer. Environ. Sci. Technol. 2014, 48, 9014–9021.
[7]. Holmes, L.A.; Turner, A.; Thompson, R.C. Adsorption of trace metals to plastic pellets. Environ. Pollut. 2012, 160, 42–48.
[8]. Rochman, C.M.; Hoh, E.; Hentschel, B.T.; Kaye, S. Sorption of organic contaminants to plastic pellets. Environ. Sci. Technol. 2013, 47, 1646–1654.
[9]. Urbanek, A.K.; Rymowicz, W.; Mirończuk, A.M. Degradation of plastics in cold marine habitats. Appl. Microbiol. Biotechnol. 2018, 102, 7669–7678.
[10]. Jacquin, J.; Cheng, J.; Odobel, C.; et al. Microbial ecotoxicology of the plastisphere. Front. Microbiol. 2019, 10, 865.
[11]. Syranidou, E.; Karkanorachaki, K.; Amorotti, F.; et al. Biodegradation of plastic films by marine consortia. J. Hazard. Mater. 2019, 375, 33–42.
[12]. Sun, C.; et al. Research progress on sources, distribution and ecological environment impact of microplastics in the ocean. Adv. Mar. Sci. 2016, 34(4), 449–456.
[13]. Kalathil, S.; Miller, M.; Reisner, E. Microbial fermentation of polyethylene terephthalate (PET) plastic waste for the production of chemicals or electricity. Angew. Chem. Int. Ed. 2022, 61(45), e202211057.
[14]. Loll-Krippleber, R.; Sajtovich, V.A.; Ferguson, M.W.; Ho, B.; Burns, A.R.; Payliss, B.J.; et al. Development of a yeast whole-cell biocatalyst for MHET conversion into terephthalic acid and ethylene glycol. Microb. Cell Fact. 2022, 21(1), 280.
[15]. Sung, L.P.; Cook, R.; Fan, C.; Li, Y.; Rostampour, S. Changes in the chemical composition of polyethylene terephthalate under UV radiation in various environmental conditions. [Journal?] 2024, (in press).
[16]. Muangchinda, C.; Pinyakong, O. Enrichment of LDPE-degrading bacterial consortia: Community succession and enhanced degradation efficiency through various pretreatment methods. Sci. Rep. 2024, 14(1), 28795.
[17]. Putcha, J.P.; Kitagawa, W. Polyethylene biodegradation by an artificial bacterial consortium: Rhodococcus as a competitive plastisphere species. Microbes Environ. 2024, 39(3), ME24031.
[18]. Qian, Y.; Huang, L.; Yan, P.; Wang, X.; Luo, Y. Biofilms on plastic debris and the microbiome. Microorganisms 2024, 12(7), 1362.
[19]. Soni, N.; Kumarasamy, V.; Gupta, P.; Singh, S.D.K.; Kamaraj, C.; Subramaniyan, V.; et al. Enhancement of low-density polyethylene biodegradation through the production of surface-active compounds by Pluralibacter gergoviae TYB1. Sci. Rep. 2025, 15(1), 23270.
[20]. Jabloune, R.; Khalil, M.; Moussa, I.E.B.; Simao-Beaunoir, A.M.; Lerat, S.; Brzezinski, R.; Beaulieu, C. Enzymatic degradation of p-nitrophenyl esters, polyethylene terephthalate, cutin, and suberin by Sub1, a suberinase encoded by the plant pathogen Streptomyces scabies. Microbes Environ. 2020, 35(1), ME19086.
[21]. Kawai, F.; Iizuka, R.; Kawabata, T. Engineered polyethylene terephthalate hydrolases: Perspectives and limits. Appl. Microbiol. Biotechnol. 2024, 108(1), 404.
[22]. Yoshida, S.; Hiraga, K.; Takehana, T.; Taniguchi, I.; Yamaji, H.; Maeda, Y.; et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 2016, 351(6278), 1196–1199.
[23]. Joo, S.; Cho, I.J.; Seo, H.; Son, H.F.; Sagong, H.Y.; Shin, T.J.; et al. Structural insight into the molecular mechanism of poly(ethylene terephthalate) degradation. Nat. Commun. 2018, 9, 382.
[24]. Flemming, H.-C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8(9), 623–633.
[25]. Wu, X.; et al. Environmental health and safety implications of the interplay between biofilms and microplastics. Environ. Sci. Technol. Lett. 2024, (online first).
[26]. Stewart, P.S.; Franklin, M.J. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 2008, 6(3), 199–210.
[27]. Shi, X.; Chen, Z.; Wei, W.; Chen, J.; Ni, B.-J. Toxicity of micro/nanoplastics in the environment: Roles of plastisphere and eco-corona. Soil Environ. Health 2023, 1, 100002.
[28]. Debroy, A.; George, N.; Mukherjee, G. Role of biofilms in the degradation of microplastics in aquatic environments. J. Chem. Technol. Biotechnol. 2021, 96(11), 2994–3008.
[29]. Scheffer, G.; Gieg, L.M. The mystery of piezophiles: Understudied microorganisms from the deep, dark subsurface. Microorganisms 2023, 11, 1629.
[30]. Bartlett, D.H. Pressure effects on in vivo microbial processes. Biochim. Biophys. Acta 2002, 1595, 367–381.
[31]. Gewert, B.; Plassmann, M.M.; MacLeod, M. Pathways for degradation of plastic polymers floating in the marine environment. Environ. Sci. Process. Impacts 2015, 17, 1513–1521.
[32]. Jiao, N.; Herndl, G.J.; Hansell, D.A.; et al. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nat. Rev. Microbiol. 2010, 8, 593–599.
[33]. Thauer, R.K.; Jungermann, K.; Decker, K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 1977, 41, 100–180.
[34]. Moraes, J.O.; Albuquerque, L.; Costa, M.S.; Fernandes, A.T. Halophiles and their biomolecules: Recent advances and future perspectives. Mar. Drugs 2020, 18, 534.
[35]. Oren, A. Microbial life at high salt concentrations: Phylogenetic and metabolic diversity. Saline Syst. 2008, 4, 2.
[36]. Dang, H.; Lovell, C.R. Microbial surface colonization and biofilm development in marine environments. Microbiol. Mol. Biol. Rev. 2016, 80, 91–138.