References
[1]. Zong, C., Lu, L., Lei, X., & Zhao, P. (2017). A path planning approach for multi-dof spatial manipulator via A* algorithm. Journal of Hefei University of Technology (Natural Science), 40(2), 164-168.
[2]. Yaqiu, L., Hanchen, Z., Xun, L., & Yan, X. (2021). An Improved RRT Based Obstacle Avoidance Path Planning Algorithm for Industrial Robot. Information and Control, 50(2), 235-246.
[3]. Zou, Y., Li, L., & Gao, Z. (2019). Obstacle avoidance path planning for harvesting robot arm based on improved PRM. Transducer and Microsystem Technologies, 38(1), 52-56.
[4]. Li, Y., & Xu, D. (2020). Cooperative path planning of dual-arm robot based on attractive force self-adaptive step size RRT. Robot, 42(5), 606-616.
[5]. Wang, Y., Liu, Y., Jia, H., & Xue, G. (2022). Path planning of mechanical arm based on intensified RRT algorithm. J. Shandong Univ.(Eng. Sci.), 52, 123-130.
[6]. Ma, R., Luijkx, J., Ajanovic, Z., & Kober, J. (2024). Explorllm: Guiding exploration in reinforcement learning with large language models. arXiv preprint arXiv: 2403.09583.
[7]. Kheirandish, A., Xu, D., & Fekri, F. (2024). LLM-Augmented Symbolic Reinforcement Learning with Landmark-Based Task Decomposition. arXiv preprint arXiv: 2410.01929.
[8]. Shukla, Y., Gao, W., Sarathy, V., Velasquez, A., Wright, R., & Sinapov, J. (2023). Lgts: Dynamic task sampling using llm-generated sub-goals for reinforcement learning agents. arXiv preprint arXiv: 2310.09454.
[9]. Shek, C. L., & Tokekar, P. (2025). Option Discovery Using LLM-guided Semantic Hierarchical Reinforcement Learning. arXiv preprint arXiv: 2503.19007.
[10]. Siedler, P. D., & Gemp, I. (2025). LLM-Mediated Guidance of MARL Systems. arXiv preprint arXiv: 2503.13553.