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Robot control is a current research hotspot, with robotic arm trajectory planning
being a key direction. However, traditional methods exhibit insufficient adaptability and
flexibility, making it difficult to meet the demands of complex tasks and dynamic
environments. This paper proposes a path planning system based on the collaboration of
reinforcement learning (RL) and large language models (LLM). The system consists of three
modules: environment perception and LLM-based task decomposition and scheduling, RL-
based trajectory planning, and motion command generation. By integrating the cognitive
capabilities of LLM with the optimization capabilities of RL, the system enables task-driven
robotic arm trajectory planning. In terms of design, the upper layer employs LLM for task
analysis and high-level command generation, while the lower layer uses RL for trajectory
optimization, forming a hierarchical collaborative mechanism. To verify its effectiveness,
experiments were conducted on both simulated and real COBOT platforms for a static
block-grabbing task, comparing three schemes: pure RL, pure LLM, and the proposed LLM-
RL fusion. Results show that the LLM-RL approach outperforms the baselines in terms of
average path length and execution time, while also significantly improving RL training
efficiency.
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In China, research on manipulator trajectory planning has undergone a transition from traditional
algorithms to the gradual integration of intelligent approaches. Traditional path planning methods
have played an indispensable role in early studies. Zong Chengxing et al. [1] proposed a spatial
multi-DOF manipulator trajectory planning method based on the A* algorithm, which employed a
customized heuristic function to improve search efficiency in high-dimensional spaces. Liu Yaqiu et
al. [2] improved the RRT algorithm for industrial robot obstacle-avoidance by optimizing sampling
distribution and extension strategies, significantly enhancing performance in cluttered environments.
Similarly, Zou Yuxing et al. [3] improved the PRM for harvesting manipulators by refining sampling
and connection strategies, enhancing adaptability in agricultural environments. Li Yang et al. [4]
proposed a gravity-adaptive step-size RRT for dual-arm coordination, effectively overcoming the
low efficiency of traditional RRT in cooperative scenarios. More recently, Wang Yu et al. [5]
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integrated reinforcement learning into the RRT framework to optimize sampling, thereby
accelerating convergence and improving path quality in manipulator trajectory planning.

Internationally, significant progress has been made in integrating reinforcement learning (RL)
with large language models (LLMs) for trajectory planning, leading to the emergence of diversified
technical pathways. For instance, Ma et al. [6] introduced the ExplorLLM framework, where LLMs
provide linguistically informed exploration strategies to RL agents, thereby significantly enhancing
learning efficiency in complex environments. Building on the need for handling more complex
tasks, Kheirandish et al. tackled the challenge of decomposing high-level objectives into learnable
subtasks [7]. They proposed a hybrid framework that combines LLMs with symbolic reinforcement
learning (Symbolic RL), allowing for more structured task representations. Extending this idea,
Shukla et al. proposed the LgTS framework, in which LLMs generate subgoal DAGs to guide
teacher—student learning [8], enabling RL agents to efficiently acquire strategies in dynamic
conditions with fewer environment interactions. Shek et al. [9] advanced the concept by designing
an LLM-guided hierarchical RL framework, where subgoal sequences and relation trees are
employed to construct option hierarchies within a three-level policy structure. Finally, addressing
collaborative scenarios, Siedler et al. [10] explored the integration of LLM-based interventions into
multi-agent reinforcement learning frameworks, thereby extending the applicability of LLM-RL
integration to multi-manipulator systems.

Building upon these advancements, this paper proposes a unified framework for robotic arm
trajectory planning that integrates the semantic reasoning and task decomposition capabilities of
LLMs with the adaptive optimization strengths of RL. The system is designed in a layered structure:
the LLM module (DeepSeek) interprets natural language instructions and decomposes them into
structured sub-goals, while the RL module, based on the Proximal Policy Optimization (PPO)
algorithm, focuses on learning optimized motion policies for each sub-goal. The RL problem is
carefully formulated with a tailored state representation, action space, and a composite reward
function, which collectively ensure efficiency, stability, and task success.

The significance of this study lies in demonstrating that such an LLM-RL collaborative
framework can outperform pure LLM or pure RL approaches. Through simulation and real-world
experiments, the proposed method achieves shorter paths, faster execution, higher task success rates,
and—crucially—improved sample efficiency in RL training. These results highlight the potential of
combining LLM-driven semantic guidance with RL-based adaptive optimization to enhance robotic
autonomy. Ultimately, this research provides a feasible approach to developing more intelligent,
flexible, and human-compatible robotic systems, offering promising implications for intelligent
manufacturing and human-robot collaboration in dynamic industrial environments.

The proposed system consists of three core modules, as illustrated in Figure 1:
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Figure 1. Workflow
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(1) Environment Perception & LLM Task Decomposition Module: This module is responsible for
acquiring basic scene information (primarily object and target bin coordinates provided as input or
from perception) and processing the user's natural language command. The LLM component parses
the instruction and decomposes the overall task into a logical sequence of executable sub-goals (
"move to pre-grasp pose", "close gripper", "move to pre-place pose", "open gripper").

(2) RL Path Planning Module: This serves as the core decision-making unit. For each sub-goal
received from the LLM module, the RL agent (based on PPO) learns and executes an optimal
motion path. It interacts with the simulation environment, utilizing a defined state representation,
action space, and reward function to learn a policy that maximizes cumulative reward for the sub-
task.

(3) Motion Instruction Generation and Execution Module: This module converts the planned path
(typically a sequence of joint velocities or target poses from the RL module) into low-level motion
commands compatible with the specific robotic arm controller (using the Agilebot SDK). It handles
necessary conversions and ensures safe execution.

The integrated workflow is as follows: The user provides a natural language instruction and
relevant coordinates. The LLM module processes this input and generates a sub-goal sequence. This
sequence is passed sequentially to the RL module. For each sub-goal, the RL module plans and
executes the corresponding motion trajectory. The Motion Instruction module converts these plans
into actionable commands for the robot. This loop continues until all sub-goals are completed or a
failure is detected.

In this framework, the task decomposition module is powered by DeepSeek-V3, which was selected
as the core LLM due to its outstanding ability to process and understand Chinese natural language
instructions—an essential requirement for the intended application scenario. Beyond language
comprehension, DeepSeek-V3 also exhibits strong logical reasoning and planning capabilities,
making it well-suited for breaking down complex tasks into structured sub-goals.

To ensure reliable and machine-parsable outputs, prompt engineering strategies were carefully
designed. First, the role of the LLM was explicitly defined as a “robotic task planning assistant” to
anchor its behavior. Second, the output format was strictly specified in JSON, with clearly defined
fields such as action type, target description, and parameters (e.g., X, y, z for move_ cart
actions)such as action_type, target description, and parameters (e.g., X, y, z for move_cart actions).
Third, environment context—including workspace coordinates and safety height constraints—was
injected into the prompts to provide situational grounding. Additionally, few-shot examples were
incorporated, illustrating input-instruction to output-subgoal sequences to guide the model’s
reasoning process. Finally, safety constraints were embedded within the prompt logic, such as
minimum Z-axis limits and approach heights, ensuring that generated sub-goals adhered to
operational safety requirements.

* Algorithm: Proximal Policy Optimization (PPO) was selected due to its stability, efficiency, and
suitability for continuous control problems like robotic manipulation.
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» State Space ( st ): The state observation vector combines proprioceptive and goal-oriented
information:

St = [qh 42, .-+, d6 flla q27 s 7q67 X, Y5 2%, Xtargets Ytargets Ztarget] (1)

where q; are joint angles, ¢; are joint velocities, [x,y,z] is the end-effector Cartesian position,
and [Xearget, Ytarget; Ztarget| 1S the current target position (from the sub-goal).

* Action Space ( at ): The action is defined as normalized target joint velocities for the 6 joints:

* a; = [demd 15 - - - » demd 6] » Where each component is constrained to [-1, 1].

* Reward Function ( rt ): A composite reward function was designed to guide learning:

Iy = 10.0 rtarget + 1.0 Tyist + 10.0 rplace (2)

Ttarget - A sparse reward (+100) granted only when the end-effector successfully reaches the
current target position (distance < 0.05m). This strongly signals the achievement of the sub-goal
task.

raist - A dense, negative reward proportional to the Euclidean distance between the end-effector
and the current target (|| Pee — Pgoal || ). This provides continuous guidance throughout the
motion.

Tplace : A reward term specific to the final placement action, providing positive reward for
success and negative reward based on distance during placement attempts. Phase switches (grasp vs.
place) were determined by gripper state and proximity.

3. Experiments and results
3.1. Experimental setup

« Simulation Platform: Experiments were conducted using PyBullet physics simulation A URDF
model of the Agilebot GBT-C5A 6-DOF collaborative robotic arm was adopted, with accurate
kinematic parameters configured.. Figure 2(a) shows the simulation environment running on a PC,
and Figure 2(b) shows the actual physical scene.
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Figure 2. (a) Simulation environment on PyBullet, (b) actual physical scene

* Task: The benchmark task involved picking a colored block from a specified coordinate on a
workspace and placing it accurately into a designated bin location. The environment contained static
obstacles.
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* Compared Methods:

* Pure LLM: The LLM generated a sequence of Cartesian coordinate waypoints based on the
instruction and embedded logic/constraints. These waypoints were directly converted to robot
commands via inverse kinematics (using SDK functions). This method lacked online optimization or
adaptation.

* Pure RL: A PPO agent was trained end-to-end to perform the entire pick-and-place task from
scratch based on a reward function designed for the overall objective. This required learning the
complete task sequence and long-horizon planning.

* LLM-RL Fusion (Proposed): The LLM decomposed the task into sub-goals. A separate instance
of the PPO agent (with the same core architecture as pure RL) was trained (or executed, if pre-
trained) for each type of sub-goal ('move to point', 'grasp').

* Evaluation Metrics:

» Average Path Length (APL): The total Cartesian distance travelled by the end-effector in
successful tasks.

» Success Rate: Percentage of tasks completed successfully without errors (dropping object,
collision).

» Training Efficiency: The average number of training steps required for the RL policy to
converge to a stable performance level.

* Task Performance: The LLM-RL fusion method achieved the best performance across both
primary metrics (Table 1), which demonstrates the effectiveness of the combined approach. Pure RL
performed better than pure LLM but worse than the fusion method. Pure LLM generated longer
paths due to lack of motion optimization.

Table 1. Performance comparison (lower is better)

Metric Pure LLM Pure RL LLM-RL Fusion
Avg. Path Length (m) 1.92 1.55 1.38
Avg. Exec. Time (s) 25.5 20.1 16.5

The pure LLM method produced longer, less optimized paths as it relied on geometric reasoning
without motion optimization. Although the pure RL method found better paths than the pure LLM
method, it often got trapped in local optima or required more time to learn the full task sequence—
resulting in worse performance than the fusion approach. The fusion method benefits from the LLM
providing a logically correct skeleton of the task and the RL optimizing the motion between these
defined points.
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Figure 2. Comparison of pure RL method and LLM+RL fusion method

* Training Efficiency: A significant advantage of the fusion approach was observed in the sample
efficiency of the RL component. The RL agent focused on learning policies for individual sub-goals
converged much faster (requiring approximately 380,000 steps per sub-task type on average)
compared to the pure RL agent which needed to learn the entire long-horizon task end-to-end
(requiring approximately 1,700,000 steps), which can be seen in Figure 3. This is because each sub-
task represents presents a simpler, shorter-horizon problem with more immediate and dense rewards,
thereby facilitating faster learning.

* Success Rate: The fusion method also achieved a higher task success rate (93%) compared to
the pure LLM method (82%), benefiting from the RL's ability to adapt to physics and optimize
locally.

4. Conclusion

This paper proposed an integrated framework for robotic arm path planning that leverages the
complementary strengths of large language models (LLMs) and reinforcement learning (RL).
Specifically, the system architecture enables the LLM (DeepSeek) to perform high-level semantic
parsing and decompose tasks into manageable sub-goals, while the RL agent (PPO) is dedicated to
learning optimized motion policies for each sub-goal. Within this framework, we formulated the RL
problem in detail by defining the state representation, action space, and a composite reward function
that jointly ensures task success, efficiency, and smoothness of motion. Experimental validation in
simulation demonstrated that the proposed LLM-RL fusion method consistently outperformed pure
LLM and pure RL baselines in terms of path efficiency, execution speed, and task success rate,
while also significantly improving the sample efficiency of RL training. These results confirm the
potential of integrating semantic reasoning from LLMs with the adaptive optimization capabilities
of RL, highlighting a viable direction for addressing complex robotic manipulation tasks in future
research.
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