References
[1]. J. Ahn, J. Kim, and Y. Park, "Deep learning approaches for weather forecasting: A review, " Atmosphere, vol. 15, no. 1, p. 123, 2024. doi: 10.3390/atmos15010123.
[2]. C. Wen, Z. Fu, Y. Guo, and Q. Zhou, "Deep learning for weather and climate prediction: A survey, " Artif. Intell. Rev., vol. 55, no. 8, pp. 5977–6006, 2022. doi: 10.1007/s10462-021-10083-1.
[3]. P. Hewage, A. Behera, M. Trovati, and E. Pereira, "Machine learning approaches for weather and climate modelling, " Neurocomputing, vol. 461, pp. 237–256, 2021. doi: 10.1016/j.neucom.2021.07.045.
[4]. M. Reichstein, G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, N. Carvalhais, and P. Prabhat, "Deep learning and process understanding for data-driven Earth system science, " Nature, vol. 566, no. 7743, pp. 195–204, 2019. doi: 10.1038/s41586-019-0912-1.
[5]. A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks, " Adv. Neural Inf. Process. Syst., vol. 25, pp. 1097–1105, 2012.
[6]. K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition, " Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 770–778, 2016. doi: 10.1109/CVPR.2016.90.
[7]. A. Vaswani et al., "Attention is all you need, " Adv. Neural Inf. Process. Syst., vol. 30, pp. 5998–6008, 2017.
[8]. H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang, "Informer: Beyond efficient transformer for long sequence time-series forecasting, " Proc. AAAI Conf. Artif. Intell., vol. 35, no. 12, pp. 11106–11115, 2023.
[9]. L. Breiman, "Random forests, " Machine Learn., vol. 45, no. 1, pp. 5–32, 2001. doi: 10.1023/A: 1010933404324.
[10]. X. Li and Y. Qian, "CNN-based approaches for short-term weather prediction, " J. Appl. Meteorol. Climatol., vol. 63, no. 2, pp. 245–260, 2024.
[11]. Y. Li, H. Zhang, and J. Wang, "Application of random forests in meteorological forecasting, " Theor. Appl. Climatol., vol. 157, no. 3–4, pp. 789–803, 2024.
[12]. J. A. Weyn, D. R. Durran, and R. Caruana, "Can machines learn to predict weather? Using deep learning to predict gridded 500-hPa geopotential height from historical weather data, " J. Adv. Modeling Earth Syst., vol. 11, no. 8, pp. 2680–2693, 2019. doi: 10.1029/2019MS001705.
[13]. S. Wang, Y. Liu, X. Chen, and J. Zhu, "Hybrid models for weather prediction combining deep learning and physical approaches, " Clim. Dyn., vol. 60, no. 1–2, pp. 55–70, 2023. doi: 10.1007/s00382-022-06410-7.
[14]. J. Chen, L. Zhao, and Y. Huang, "Evaluation of error metrics in weather forecasting models, " Environ. Model. Softw., vol. 162, p. 105589, 2023. doi: 10.1016/j.envsoft.2023.105589.
[15]. R. J. Hyndman and A. B. Koehler, "Another look at measures of forecast accuracy, " Int. J. Forecasting, vol. 22, no. 4, pp. 679–688, 2006. doi: 10.1016/j.ijforecast.2006.03.001.
[16]. R. Lam, Q. He, and T. Zhang, "Explainable AI in weather forecasting: Current progress and future directions, " Expert Syst. Appl., vol. 213, p. 118957, 2023. doi: 10.1016/j.eswa.2022.118957.
[17]. P. D. Dueben and P. Bauer, "Challenges and design choices for global weather and climate models based on machine learning, " Geosci. Model Dev., vol. 11, no. 10, pp. 3999–4009, 2018. doi: 10.5194/gmd-11-3999-2018.
[18]. S. Rasp, P. D. Dueben, S. Scher, J. A. Weyn, S. Mouatadid, and N. Thuerey, "WeatherBench: A benchmark dataset for data-driven weather forecasting, " J. Adv. Modeling Earth Syst., vol. 12, no. 11, e2020MS002203, 2020. doi: 10.1029/2020MS002203.
[19]. K. Bi, Z. Sun, and X. Zhao, "Robust weather forecasting models using ensemble deep learning, " Appl. Intell., vol. 53, no. 5, pp. 5431–5445, 2023. doi: 10.1007/s10489-022-04077-8.
[20]. Y. Liu, T. Xu, X. Chen, and W. Zhang, "Transformer-based models for weather forecasting: A comprehensive study, " IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–15, 2022. doi: 10.1109/TGRS.2021.3137264.