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Accurate short-term temperature prediction is of great significance in fields such
as agricultural production and disaster prevention and mitigation. This study aims to explore
the performance differences among three models—Convolutional Neural Network (CNN),
Transformer, and Random Forest (RF)—in short-term temperature prediction tasks,
providing a reference for model selection and optimization in meteorological forecasting.
Based on the Beijing PM2.5 dataset, the research constructs supervised learning samples
through data preprocessing (using the temperature sequence of the past 24 hours as input to
predict the temperature at the 25th hour) and trains and evaluates the three models under
unified experimental configurations. The results show that all three models can achieve
high-precision predictions. Among them, Random Forest performs the best , with significant
advantages in error control, noise resistance, and high training efficiency. CNN follows and
excels at capturing local short-term fluctuation features. Transformer , although capable of
modeling long-range dependencies, performs slightly inferior with the current dataset. The
study reveals that traditional machine learning models still have practical value in resource-
constrained scenarios, while deep learning models can further improve accuracy when
sufficient data is available. Model fusion and the introduction of multiple factors may be
future optimization directions.

Short-term temperature prediction, CNN, Transformer, Random Forest, machine
learning

Weather forecasting plays an important role in daily life. It guides agricultural planning for planting
and harvest. It helps transportation agencies prepare for severe weather and reduce risk. Energy
providers can also optimize power and heating schedules [1]. Accurate forecasts create time
windows for disaster prevention and loss reduction. Advances in observation have increased the
volume and precision of data from satellites, radars, and sensors. These advances give data-driven
methods a strong foundation [2]. Beyond traditional numerical weather prediction (NWP), many
researchers now use machine learning and deep learning. These methods are flexible and adaptive.
They can learn complex time patterns and nonlinear relations [3,4]. This study aims to predict short-
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term changes in air temperature and to compare three representative methods. A convolutional
neural network (CNN) slides kernels along the time axis to extract local pattern changes. It captures
short-term temperature fluctuations efficiently [5,6]. A Transformer uses self-attention to model
dependencies over long sequences. It attends to global and local features at the same time. It suits
meteorological data with long-range dependence [7-9].A random forest (RF) averages predictions
from many decision trees. It offers robust performance, strong resistance to overfitting, and
tolerance to outliers [10-12].By comparing these methods, we aim to reveal their strengths and
limits for short-term temperature forecasting. The results can guide model choice and later
optimization.

2. Method

This study uses three representative methods to model and forecast short-term temperature. The
methods are a Convolutional Neural Network (CNN), a Transformer model, and a Random Forest
model. Each model has a distinct view of the data. Together, they help us understand and fit
temperature patterns in time series.

2.1. Convolutional Neural Network (CNN)

CNN is a deep neural network with local receptive fields and shared weights. Researchers use it
widely in image and speech tasks.In time-series forecasting, a 1D convolution can extract local
features from sequences. It captures short-term trends effectively [10,13].A CNN also uses fewer
parameters than many traditional networks. It often trains faster and more stably [14]. We implement
a 1D CNN in PyTorch. The input is the past 24 hours of temperature. The tensor shape is
[batch_size,1,24]. The network stacks several convolution layers (nn.Convld). The activation is
ReLU (nn.ReLU). Max-pooling layers (nn.MaxPoolld) reduce the feature length. A final fully
connected layer (nn.Linear) outputs the predicted temperature for hour 25. We tune kernel size,
channel count, and depth. The goal is to improve fit while keeping training stable.
1D convolution for a single input channel can be written as:

k-1
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x :the input sequence.

w :the convolution-kernel weights

b : the bias

k :the kernel size.

y: :the value of the output sequence at position t

The output of a convolution layer can be expressed formally as:
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v+ ") :the output at position t from the k" kernel
Xt :is the it element of the input sequence starting at position t ;

o™ :is the t"* weight of the k* kernel

b®) :the bias of the k" kernel

o :a nonlinear activation function, such as ReLU

K :the kernel size

This formula shows the core computation in a CNN convolution layer. The layer applies a sliding
window (the kernel) to the input sequence. It performs a weighted sum, adds a bias, and then uses an
activation function to produce a feature value. Each kernel extracts a different local pattern, such as
an upward trend or an abrupt change. Multiple kernels run in parallel and capture diverse features in
the data. This design improves the model’s ability to sense complex fluctuations. In time-series
tasks, this mechanism fits short-term dynamics especially well. It plays a key role in the final
prediction.
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Figure 1. CNN: convolution & max-pooling
2.2. Transformer model

A Transformer is a neural network that relies only on attention. It was first used in natural language
processing.Unlike an RNN, a Transformer does not pass information step by step in order.

The model uses self-attention to capture relations between all positions in the input.This design
suits time series with long-range dependence.lts parallel computation also improves training
efficiency [6,7].This study builds a simplified Transformer in PyTorch.The model uses two encoder
layers (nn.TransformerEncoderLayer).Each layer contains multi-head self-attention and a feed-
forward network.A linear embedding and a positional encoding first transform the temperature
sequence. These steps let the model track time order [8]. The output is the predicted temperature at
hour 25. We use the Adam optimizer and the mean squared error (MSE) loss.

Scaled Dot-Product Attention:

. QKT
Attention| Q, K, V| = softmax A%
v dx

Here, Q, K ,and V are the query, key, and value vectors.The term d, is the key dimension.
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Positional Encoding:
We use the standard sinusoidal positional encoding. The encoding adds order information to the
embeddings.

- pos B pos
PE (pos,21) = sm( 1000021/ dmod ) » PB(pos2i1) = COS( 100002/ dmode >
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Figure 2. Transformer architecture & multi-head self-attention

In addition to short-term prediction, Transformer-based architectures have been extended for
long-horizon meteorological forecasting, demonstrating their effectiveness in capturing complex
temporal dependencies [19].

2.3. Random Forest (RF)

A Random Forest is an ensemble learning method. The model builds many decision trees and
combines their outputs. The approach improves accuracy and stability [13].The method is non-
parametric and resists overfitting. It often works well when data are limited or structure is simple.

We use RandomForestRegressor from scikit-learn. The input is the past 24 hours of temperature.
The target is the temperature at hour 25. Key parameters include n_estimators = 100 and an auto-
selected max_depth. The model does not require feature scaling. The model also does not rely on
time order. The method suits tasks with clear feature structure.

For regression, the forest averages tree outputs:

L lg
y:ﬁ;Ti X

Ti(x) : the prediction from the i* tree. N : the total number of trees. ¥ : the final prediction.
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Figure 3. Random forest: ensemble of decision trees
3. Result
3.1. Experimental data

We use the Beijing PM2.5 dataset from the UCI repository. The dataset records hourly weather from
2010 to 2014 for one area in Beijing. The variables include PM2.5, temperature, humidity, pressure,
wind speed, and precipitation. In this experiment, we set temperature as the target. The goal is to
predict a future temperature from recent observations.

We preprocess the data in Python. We use pandas and numpy for cleaning and normalization. We
apply Z-score normalization to each variable. We then build supervised samples with a sliding
window. The input is 24 consecutive hours of temperature. The target is the temperature at hour 25.
We split the data in time order into a training set (70%) and a test set (30%). The test set is not used
during training.

3.2. Experimental setup

All models take the same input. The input is the past 24 hours of temperature. The output is the
temperature at hour 25. We use the same train and test splits for all models to ensure fairness.

The CNN uses 1-D convolution. We tune the number of channels and the kernel size.The
Transformer uses two encoder layers. Each layer has multi-head attention and a feed-forward
network.The Random Forest tests several parameter groups. We vary the number of trees, the
maximum depth, and the minimum samples per leaf. We search for a good configuration.

We run the experiments on Windows 11 Pro. The machine has an AMD Ryzen 9 7945HX CPU,
32 GB RAM, and a discrete GPU with 16 GB VRAM. The setup supports stable and efficient
training and testing. We compare three models: CNN, Transformer, and Random Forest. The target
variable is temperature from the Beijing PM2.5 dataset. All models use the same input format. We
input the past 24 hours and predict hour 25. We tune hyperparameters for each model. We then
evaluate test-set prediction accuracy to compare fit and generalization under different settings.
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Table 1. CNN model performance comparison

Learning Rate Test-set R? score (range)
0.0010 0.9062 - 0.9315
0.0013 0.9270 - 0.9313
0.0016 0.9275 - 0.9294
0.0020 0.9303 - 0.9308
0.0023 0.9308
0.0026 0.9300 - 0.9310
0.0030 0.9300 - 0.9310

This table shows the effect of learning rate on CNN performance under a fixed architecture. The
model fits best when the learning rate is between 0.0020 and 0.0026. The test R? values cluster
around 0.930. This range balances convergence speed and error reduction. The CNN shows strong
local feature extraction. The model captures short-term temperature swings effectively.

Table 2. Transformer model performance comparison

Learning Rate Test-set R? score (range)
0.0010 0.9171
0.0013 0.8841
0.0016 0.9266
0.0020 0.9191
0.0023 0.9045
0.00268 0.9124
0.0030 0.9188

The Transformer is more sensitive to the learning rate. The best result appears at a learning rate of
0.0016, with an R? of 0.9266. The model relies on long-range dependence and shows smooth
trends with smaller error swings [8]. However, the response to extreme values is slower. This lag can
make short-term forecasts slightly weaker than those of the CNN.
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Table 3. Random Forest (RF) model performance comparison

n_estimators min_samples_leaf max_depth R?
100 1 10 0.9307
100 2 10 0.9317
100 3 10 0.9317
100 1 15 0.9305
100 2 15 0.9318
100 3 15 0.9317
100 1 20 0.9306
100 2 20 0.9317
100 3 20 0.9319
200 1 10 0.9307
200 2 10 0.9313
200 3 10 0.9315
200 1 15 0.9306
200 2 15 0.9316
200 3 15 0.9317
200 1 20 0.9306
200 2 20 0.9315
200 3 20 0.9319

This table reports RF performance under different parameter sets. The results show small gains as
the number of trees increases, but the overall change is minor. The R? values stay stable between
0.930 and 0.932, which indicates strong robustness and generalization. The best R? is 0.9319 at
n_estimators = 200, min_samples_leaf = 3, and max_depth = 20. On this dataset, added complexity
brings only marginal returns. The strength of the forest comes mainly from the ensemble, not from
deeper single trees.

Table 4. Model performance comparison

CNN Transformer Random Forest
R2 0.9285 0.9145 0.9319
RMSE 0.0249 0.0272 0.0243
MAE 0.0142 0.0174 0.0129
MAPE 0.2985 0.3240 0.2046
MSE 0.0006 0.0007 0.0006
ExplainedVar 0.9313 0.9219 0.9319
TrainTime 81.9052 257.7987 21.8078
InferLatency(s/sample) 0.0000 0.0002 0.0000

Params 6465.0 275105.0 NA
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The CNN performs best at learning rates from 0.0023 to 0.0026, with R?2 >0.930. The model
suits short-term fluctuation capture. The Transformer is more sensitive to the learning rate and peaks
at 0.0016 with R? =0.9266. The model suits global trend capture. The Random Forest is stable
across settings and reaches a top R? of 0.9319. Its predictions look slightly less smooth, but
training is fast and noise resistance is strong.

Deep models are slightly more accurate than the traditional model, but they are less efficient than
the Random Forest in training complexity and resource use [8]. Different models shine in different
settings. Deep learning offers higher accuracy but demands more tuning and compute. Future work
can try ensembling, add more weather variables, and include external signals such as pollution
sources and human activity. These steps may improve practical value and accuracy.

Error metrics support these points. The Random Forest shows clear advantages in RMSE, MAE,
and MAPE. Its MAPE is lower than that of the CNN and the Transformer, which shows stronger
robustness to outliers and extreme swings [14,15]. Explained variance results show that RF and
CNN have similar feature-explanation ability, and both exceed the Transformer [16]. Inference
latency also matters. The CNN and RF can respond in milliseconds. The Transformer is slower, but
it has potential for long-range dependence [17]. For short-term temperature prediction, RF is an
efficient and stable baseline. The CNN can add extra accuracy when the dataset is larger.

This figure compares the three models on core metrics for temperature forecasting. The metrics
are R? , RMSE, MAE, and MAPE.

Random Forest reaches the highest R? at 0.9319. The model shows the best overall predictive
power. CNN follows with R? = 0.9285. The model has an edge in capturing short-term local
patterns. Transformer scores lower at R?=0.9145. The gap likely reflects limits from data scale and
structural complexity [18,19].

We also observe clear error advantages for Random Forest. The model has the lowest MAE and
MAPE. The result indicates strong stability and robustness to outliers. Recent research also suggests
that ensemble deep learning can further improve robustness by mitigating single-model bias [20].
CNN delivers accuracy close to Random Forest and remains competitive Compared with these two
models, the Transformer has a theoretical strength for long-range dependence. However, the model
does not perform as well with small samples.

Overall, Random Forest shows high accuracy and strong stability on this dataset. CNN achieves
near-RF accuracy. The two approaches suggest that classical machine learning and deep learning can
complement each other in practical forecasting.
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Core Metrics Comparison (R? / RMSE / MAE / MAPE)
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Figure 4. Performance on core metrics: CNN, transformer, and random forest
4. Conclusion

In the actual application of meteorological prediction, the model selection should be balanced with
the task characteristics and resource conditions: for the scenarios requiring rapid deployment,
limited data scale or limited computing resources, the traditional machine learning method still has
practical value; While in the pursuit of higher prediction accuracy and the use of rich historical data
and computing resources, the deep learning model can provide better performance. In addition, the
integration of multiple models, the introduction of more meteorological and external factors, or the
combination of physical models and data-driven methods have the potential to further improve the
accuracy and stability of short-term temperature prediction.

References

[1]1 J. Ahn, J. Kim, and Y. Park, "Deep learning approaches for weather forecasting: A review, " Atmosphere, vol. 15,
no. 1, p. 123, 2024. doi: 10.3390/atmos15010123.

[2] C.Wen, Z. Fu, Y. Guo, and Q. Zhou, "Deep learning for weather and climate prediction: A survey, " Artif. Intell.
Rev., vol. 55, no. 8, pp. 5977-6006, 2022. doi: 10.1007/s10462-021-10083-1.

[3] P.Hewage, A. Behera, M. Trovati, and E. Pereira, "Machine learning approaches for weather and climate
modelling, " Neurocomputing, vol. 461, pp. 237-256, 2021. doi: 10.1016/j.neucom.2021.07.045.

[4] M. Reichstein, G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, N. Carvalhais, and P. Prabhat, "Deep learning and
process understanding for data-driven Earth system science, " Nature, vol. 566, no. 7743, pp. 195-204, 2019. doi:
10.1038/s41586-019-0912-1.

[S] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks, "
Adv. Neural Inf. Process. Syst., vol. 25, pp. 1097-1105, 2012.

[6] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition, " Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), pp. 770-778, 2016. doi: 10.1109/CVPR.2016.90.

[7] A. Vaswani et al., "Attention is all you need, " Adv. Neural Inf. Process. Syst., vol. 30, pp. 5998-6008, 2017.

[8] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang, "Informer: Beyond efficient transformer for
long sequence time-series forecasting, " Proc. AAAI Conf. Artif. Intell., vol. 35, no. 12, pp. 11106-11115, 2023.

[9] L. Breiman, "Random forests, " Machine Learn., vol. 45, no. 1, pp. 5-32, 2001. doi: 10.1023/A: 1010933404324.

[10] X. Li and Y. Qian, "CNN-based approaches for short-term weather prediction, " J. Appl. Meteorol. Climatol., vol.
63, no. 2, pp. 245-260, 2024.



Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms
DOLI: 10.54254/2755-2721/2025.LD27822

[11] Y. Li, H. Zhang, and J. Wang, "Application of random forests in meteorological forecasting, " Theor. Appl.
Climatol., vol. 157, no. 3—4, pp. 789803, 2024.

[12] J. A. Weyn, D. R. Durran, and R. Caruana, "Can machines learn to predict weather? Using deep learning to predict
gridded 500-hPa geopotential height from historical weather data, " J. Adv. Modeling Earth Syst., vol. 11, no. 8, pp.
2680-2693, 2019. doi: 10.1029/2019MS001705.

[13] S. Wang, Y. Liu, X. Chen, and J. Zhu, "Hybrid models for weather prediction combining deep learning and physical
approaches, " Clim. Dyn., vol. 60, no. 1-2, pp. 55-70, 2023. doi: 10.1007/s00382-022-06410-7.

[14] J. Chen, L. Zhao, and Y. Huang, "Evaluation of error metrics in weather forecasting models, " Environ. Model.
Softw., vol. 162, p. 105589, 2023. doi: 10.1016/j.envsoft.2023.105589.

[15] R. J. Hyndman and A. B. Koehler, "Another look at measures of forecast accuracy, " Int. J. Forecasting, vol. 22, no.
4, pp. 679-688, 2006. doi: 10.1016/j.ijforecast.2006.03.001.

[16] R. Lam, Q. He, and T. Zhang, "Explainable Al in weather forecasting: Current progress and future directions, "
Expert Syst. Appl., vol. 213, p. 118957, 2023. doi: 10.1016/j.eswa.2022.118957.

[17] P. D. Dueben and P. Bauer, "Challenges and design choices for global weather and climate models based on
machine learning, " Geosci. Model Dev., vol. 11, no. 10, pp. 3999—4009, 2018. doi: 10.5194/gmd-11-3999-2018.

[18] S. Rasp, P. D. Dueben, S. Scher, J. A. Weyn, S. Mouatadid, and N. Thuerey, "WeatherBench: A benchmark dataset
for data-driven weather forecasting, " J. Adv. Modeling Earth Syst., vol. 12, no. 11, €2020MS002203, 2020. doi:
10.1029/2020MS002203.

[19] K. Bi, Z. Sun, and X. Zhao, "Robust weather forecasting models using ensemble deep learning, " Appl. Intell., vol.
53, no. 5, pp. 5431-5445, 2023. doi: 10.1007/s10489-022-04077-8.

[20] Y. Liu, T. Xu, X. Chen, and W. Zhang, "Transformer-based models for weather forecasting: A comprehensive study,
" IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1-15, 2022. doi: 10.1109/TGRS.2021.3137264.



