Research on Intelligent Navigation and Dynamic Obstacle Avoidance of Robots Based on Visual Perception: A Review
Research Article
Open Access
CC BY

Research on Intelligent Navigation and Dynamic Obstacle Avoidance of Robots Based on Visual Perception: A Review

Xiang Li 1*
1 Faculty of Information Science and Technology (FTSM), National University of Malaysia (UKM), Bangi, Malaysia
*Corresponding author: lx11668899@gmail.com
Published on 14 October 2025
Journal Cover
ACE Vol.191
ISSN (Print): 2755-273X
ISSN (Online): 2755-2721
ISBN (Print): 978-1-80590-184-6
ISBN (Online): 978-1-80590-129-7
Download Cover

Abstract

In modern robotic autonomous operations, navigation and dynamic interaction in unstructured scenarios are key to achieving efficient operations. However, current research on visual perception-based robotic systems lacks adaptability to unstructured scenarios and integration with engineering applications. This article reviews visual perception-driven intelligent navigation and dynamic interaction for robotics, analyzing the technical modules of visual SLAM and navigation collaboration, visual object recognition optimization, and multi-node autonomous interaction. The research found that the collaboration between visual SLAM and navigation has mostly been demonstrated in ideal environments, visual recognition algorithms are less adaptable to complex interference, and the engineering integration of "navigation-recognition-interaction" needs to be strengthened. This review aims to establish a solid theoretical foundation for designing robotic systems in low- and medium-complexity scenarios, advance visual perception technology from laboratory research to industrial application, and contribute to breakthroughs and developments in related fields.

Keywords:

Visual Perception, Visual SLAM, Navigation Collaboration, Visual Target Recognition, Multi-node Autonomous Interaction

View PDF
Li,X. (2025). Research on Intelligent Navigation and Dynamic Obstacle Avoidance of Robots Based on Visual Perception: A Review. Applied and Computational Engineering,191,11-17.

References

[1]. Yang, J., Wang, C., Jiang, B., Song, H., & Meng, Q. "Visual Perception Enabled Industry Intelligence: State of the Art, Challenges and Prospects". IEEE Transactions on Industrial Informatics, 2021, 17 (3), 2204 - 2219.https: //ieeexplore.ieee.org/document/9106415

[2]. T. Wang, J. Fan, P. Zheng, R. Yan, L. Wang. "Vision-Language Model-Based Human-Guided Mobile Robot Navigation in an Unstructured Environment for Human-Centric Smart Manufacturing". Engineering, 2025.  https: //doi.org/10.1016/j.eng.2025.04.028

[3]. Shahria, M. T., Sunny, M. S. H., Zarif, M. I. I., Ghommam, J., Ahamed, S. I., & Rahman, M. H. "A Comprehensive Review of Vision-Based Robotic Applications: Current State, Components, Approaches, Barriers, and Potential Solutions". Robotics, 2022, 11 (6), 139. https: //www.mdpi.com/2218-6581/11/6/139

[4]. Kim, A., & Eustice, R. M. "Perception-driven navigation: Active visual SLAM for robotic area coverage". In 2013, IEEE International Conference on Robotics and Automation (ICRA) (pp. 3196 - 3203). IEEE.  https: //ieeexplore.ieee.org/document/6631022

[5]. J. Peng, Q. Yang, D. Chen, C. Yang, Y. Xu, Y. Qin. "Dynamic SLAM Visual Odometry Based on Instance Segmentation: A Comprehensive Review". Computers, Materials & Continua, 2024, 78(1): 168-196.  https: //doi.org/10.32604/cmc.2023.041900

[6]. Sun, C., Wu, X., Sun, J., Qiao, N., & Sun, C. "Multi-Stage Refinement Feature Matching Using Adaptive ORB Features for Robotic Vision Navigation". IEEE Sensors Journal, 2022, 22 (3), 2603 - 2617.  https: //ieeexplore.ieee.org/document/9663302

[7]. Misir, O., & Celik, M. "Visual-based obstacle avoidance method using advanced CNN for mobile robots". Internet of Things, 2025, 31, 101538.https: //www.sciencedirect.com/science/article/abs/pii/S2542660525000514

[8]. Cong, Y., Chen, R., Ma, B., Liu, H., Hou, D., & Yang, C. "A Comprehensive Study of 3-D Vision-Based Robot Manipulation". IEEE Transactions on Cybernetics, 2023, 53 (3): 1682 - 1695.  https: //ieeexplore.ieee.org/abstract/document/9541299

[9]. A. Kumar, K. U. Singh, P. Dadheech, A. Sharma, A. I. Alutaibi, A. Abugabah, A. M. Alawajy. Enhanced Route navigation control system for turtlebot using human-assisted mobility and 3-D SLAM optimization [J]. Heliyon, 2024, 10: e26828. https: //doi.org/10.1016/j.heliyon.2024.e26828

[10]. P. Li, D. Chen, Y. Wang, L. Zhang, and S. Zhao, “Path planning of mobile robot based on improved TD3 algorithm in dynamic environment, ”  Heliyon, vol. 10, 2024, Art. no. e32167. doi:   https: //doi.org/10.1016/j.heliyon.2024.e32167.

[11]. R. Ospina and K. Itakura, "Obstacle detection and avoidance system based on layered costmaps for robot tractors, "  Smart Agric. Technol., vol. 11, p. 100973, 2025, doi:   10.1016/j.atech.2025.100973.

[12]. L. Zhang, X. Shi, L. Tang, Y. Wang, J. Peng, J. Zou. "RRT Autonomous Detection Algorithm Based on Multiple Pilot Point Bias Strategy and Karto SLAM Algorithm". Computers, Materials & Continua, 2024, 78(2): 2112-2136.  https: //doi.org/10.32604/cmc.2024.047235

[13]. Mousavi, H. K., & Motee, N. "Estimation With Fast Feature Selection in Robot Visual Navigation". IEEE Robotics and Automation Letters, 2023, 5 (2), 3572 - 3579.  https: //ieeexplore.ieee.org/document/9001183

[14]. X. Chi, Z. Guo, F. Cheng. A probabilistic neural network-based bimanual control method with multimodal haptic perception fusion [J]. Alexandria Engineering Journal, 2025, 127: 892-919.  https: //doi.org/10.1016/j.aej.2025.06.024

[15]. N. Li, X. Yang, H. Zhao. DBMSTN: A Dual Branch Multiscale Spatio-Temporal Network for dim-small target detection in infrared image [J]. Pattern Recognition, 2025, 162: 111372.  https: //doi.org/10.1016/j.patcog.2025.111372

[16]. T. Gaber, M. Nicho, E. Ahmed, A. Hamed. "Robust thermal face recognition for law enforcement using optimized deep features with new rough sets-based optimizer". Journal of Information Security and Applications, 2024, 85: 103838.  https: //doi.org/10.1016/j.jisa.2024.103838

[17]. Y. Liao  et al., “Refining multi-modal remote sensing image matching with repetitive feature optimization, ”  International Journal of Applied Earth Observation and Geoinformation, vol. 134, p. 104186, 2024, doi:   10.1016/j.jag.2024.104186.

[18]. H. Xu, G. Zhang, H. Zhao. Energy-Efficient Human-Like Trajectory Planning for Wheeled Robots in Unstructured Environments Based on the RCSM-PL Network [J]. iScience, 2025.  https: //doi.org/10.1016/j.isci.2025.113296

[19]. T. Soualhi, N. Crombez, A. Lombard, Y. Ruichek, S. Galland. Leveraging motion perceptibility and deep reinforcement learning for visual control of nonholonomic mobile robots [J]. Robotics and Autonomous Systems, 2025, 189: 104920.  https: //doi.org/10.1016/j.robot.2025.104920

[20]. Z. Su, H. Yao, J. Peng, Z. Liao, Z. Wang, H. Yu, H. Dai, and T. C. Lueth, "LQR-based control strategy for improving human–robot companionship and natural obstacle avoidance, " Biomimetic Intell. Robot., vol. 4, p. 100185, 2024, doi: 10.1016/j.birob.2024.100185.

[21]. A. Bhuiyan, A. An, J. X. Huang, and J. Shen, “Optimizing domain-generalizable ReID through non-parametric normalization, ” Pattern Recognition, vol. 162, p. 111356, 2025, doi: https: //doi.org/10.1016/j.patcog.2025.111356.

Cite this article

Li,X. (2025). Research on Intelligent Navigation and Dynamic Obstacle Avoidance of Robots Based on Visual Perception: A Review. Applied and Computational Engineering,191,11-17.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

About volume

Volume title: Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms

ISBN: 978-1-80590-184-6(Print) / 978-1-80590-129-7(Online)
Editor: Hisham AbouGrad
Conference date: 17 November 2025
Series: Applied and Computational Engineering
Volume number: Vol.191
ISSN: 2755-2721(Print) / 2755-273X(Online)