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Abstract. In modern robotic autonomous operations, navigation and dynamic interaction in
unstructured scenarios are key to achieving efficient operations. However, current research
on visual perception-based robotic systems lacks adaptability to unstructured scenarios and
integration with engineering applications. This article reviews visual perception-driven
intelligent navigation and dynamic interaction for robotics, analyzing the technical modules
of visual SLAM and navigation collaboration, visual object recognition optimization, and
multi-node autonomous interaction. The research found that the collaboration between
visual SLAM and navigation has mostly been demonstrated in ideal environments, visual
recognition algorithms are less adaptable to complex interference, and the engineering
integration of "navigation-recognition-interaction" needs to be strengthened. This review
aims to establish a solid theoretical foundation for designing robotic systems in low- and
medium-complexity scenarios, advance visual perception technology from laboratory
research to industrial application, and contribute to breakthroughs and developments in
related fields.
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1.  Introduction

With the rapid development of the times and the world, intelligent manufacturing and service
robotics technologies are rapidly iterating, and the demand for autonomous navigation and dynamic
interaction of robots has increased significantly [1,2] (for example, in unstructured scenarios,
cleaning foreign objects in warehouses, and moving objects in workshops). Visual perception
technology can obtain high-dimensional environmental information (such as target color, shape, and
spatial position) through non-contact means, becoming the core link between robots and complex
environments. Its integration with simultaneous localization and mapping (SLAM) and path
planning technologies has become a key path to achieving autonomous robot operations [3,1].

Although visual perception robot navigation technology has made significant progress, there are
still gaps in the existing results: First, the collaboration between visual SLAM and navigation is
mostly verified in ideal structured environments, and there is a lack of systematic summary of its
adaptability to unstructured scenes (such as work areas with randomly distributed obstacles) [4,5];
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second, the "accuracy-efficiency" trade-off mechanism of visual recognition algorithms does not
fully consider actual lighting and perspective interference, and fixed parameters (such as HSV color
thresholds) are prone to failure in complex scenes [6,7]; third, there is insufficient research on the
engineering connection of "navigation-recognition-interaction", and the literature mostly focuses on
the optimization of a single technology, which makes it difficult to directly provide a reference for
the implementation of low-cost robots [3,1].

This article reviews the application of visual perception in robot navigation, focusing on visual
SLAM and navigation collaboration, visual object recognition optimization, and multi-node
autonomous interaction. It aims to provide a theoretical reference for the design of robotic systems
for low—and medium-complexity scenarios and to promote the transition of visual perception
technology from laboratory research to industrial practice.

2.  Literature survey

Robots' intelligent navigation and dynamic obstacle avoidance are crucial for their wide application
in home services, warehousing and logistics, and outdoor inspection. Traditional navigation methods
have limitations in complex environments.

2.1.  Collaborative design of visual SLAM and autonomous navigation strategies

Visual SLAM (Simultaneous Localization and Mapping) is a core technology for autonomous
navigation of robots in unknown environments. Existing research focuses on the trade-off between
accuracy and scene adaptability. Kim et al. proposed the PDN (Perception-Driven Navigation)
algorithm, which combines visual saliency clustering with path planning to balance SLAM
exploration and revisit in structured laboratory scenarios. However, this algorithm relies on the
assumption of a static environment and carries the risk of misjudging dynamic obstacles [4]. To
address dynamic positioning challenges in unstructured settings, Peng et al. [5] proposed a dynamic
SLAM visual odometry based on instance segmentation, which improves positioning accuracy by
separating dynamic targets from static backgrounds, offering a lightweight solution for dynamic
scene adaptation.

Cong et al. expanded the application of 3D vision in SLAM, improving the navigation accuracy
of dynamic scenes. However, this solution relies on dense point cloud data from a depth camera and
has specific requirements for hardware configuration [8]. Complementing this, Kumar et al. [9,10]
optimized the 3D SLAM algorithm. They combined it with a human-assisted movement strategy to
enhance the robustness of robot positioning in low-texture scenes, demonstrating cost-effective
adaptability to complex environmental features without heavy hardware dependencies.

Lightweight SLAM solutions have also attracted attention: some studies use the Gmapping
algorithm that integrates 2D lidar and a monocular camera to adapt to conventional mobile robot
platforms. However, the map construction integrity in narrow channels and multi-obstacle scenes
must be further optimized [3]. Reference [11] uses a hierarchical cost map architecture (static-
dynamic-expansion layer) to construct a dynamic obstacle priority coverage mechanism, providing a
multi-dimensional hierarchical processing approach for visual dynamic target filtering logic. The
method of coupling TSP path planning with dynamic prediction also provides a reference direction
for task-level optimization of path replanning for multiple foreign object removal in narrow channel
scenarios, which can further enhance the practicality of navigation tasks [12].

To further validate the practicality of lightweight SLAM in industrial scenarios, this study
conducted experiments using the TurtleBot3 Waffle Pi platform, simulating a narrow-channel
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industrial environment with constrained passages and distributed static obstacles. Leveraging the
Gmapping algorithm for integrated mapping, localization, and path planning, the experiment
demonstrated that the approach accurately delineated passage boundaries and static obstacles while
mitigating motion interference-induced map errors. This validates the feasibility of lightweight
SLAM for industrial narrow-channel navigation, providing actionable insights for engineering
applications.

Figure 1 illustrates the left half of a simulated industrial narrow channel map constructed using
the Gmapping algorithm. It clearly shows the channel boundaries, the static obstacle ice cream cone
locations, and the blue foreign object ball. The right half shows the real-time navigation image of the
TurtleBot3 robot. It shows the robot moving along the planned path and avoiding motion
interference through visual dynamic filtering logic. These two images demonstrate lightweight
SLAM's mapping accuracy and navigation stability in narrow channel scenarios.

Figure 1. Narrow channel SLAM mapping and navigation results

2.2. Visual feature extraction and target recognition optimization

Visual target recognition is key for robots to perceive the environment and locate targets/obstacles.
The core challenge lies in robustness under complex interference (illumination changes, target
occlusion, etc.). Among traditional algorithms, Sun et al. proposed the KTBER_AORB model,
which improves the stability of feature matching in low-texture scenes through adaptive ORB
feature extraction and a multi-stage matching strategy. However, this model uses a fixed HSV color
threshold, easily leading to missed targets in bright or shadowy environments [6]. Mousavi et al.
designed a random sampling feature selection algorithm to meet real-time requirements, shortening
feature screening time and adapting it to mobile robot platforms. However, the recognition effect is
limited when the target is partially occluded [13].

Deep learning technology provides a new path for this field. Some studies use convolutional
neural networks (CNNs) to achieve end-to-end target detection and improve environmental
adaptability through pre-training with large amounts of image data [14]; Misir et al. [7] further
demonstrated the efficacy of CNNs by achieving end-to-end detection of blue spherical targets in
dynamic scenes, with an obstacle avoidance success rate exceeding 90%, illustrating the potential
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for real-world task integration. Other studies combine attention mechanisms to optimize CNN
models and reduce the impact of background interference on recognition results [9].

It is worth noting that existing research has also explored breakthroughs from the perspective of
multimodal feature decoupling and cross-spectral fusion: the dual-branch multi-scale spatiotemporal
network proposed in the literature [15] enhances the robustness of weak texture targets through
spatiotemporal feature decoupling; the thermal-visible light fusion scheme effectively alleviates the
recognition blind spot problem under firm light/shadow through cross-modal complementarity,
providing a reference for the expansion of visual perception dimensions [16].

To systematically synthesize these methods, a critical trade-off emerges
across  robustness,  computational efficiency, and  environmental adaptability: Traditional feature-
based techniques (e.g., KTBER_AORB [6], random sampling [13]) offer lightweight computation
for resource-constrained platforms but suffer from brittle performance under dynamic interference
(e.g., illumination shifts, partial occlusion) due to fixed parameters and handcrafted features. Deep
learning models (e.g., CNNs [7], attention-augmented networks [9]) achieve strong generalization
and robustness via large-scale pre-training, yet their high computational demands limit deployment
on conventional robotic hardware. Multimodal fusion strategies (e.g., spatiotemporal decoupling
[15], thermal-visible fusion [16]) strike a balance: cross-sensor complementarity enhances
robustness to extreme conditions (e.g., darkness, full occlusion), with moderate computational
overhead, while expanding adaptability to diverse scenarios.

This trade-off highlights the need for  scenario-specific optimization — a gap addressed by the
subsequent experimental validation of dynamic parameter adjustment, which balances traditional
efficiency with deep learning-like robustness on conventional platforms.

As shown in Figure 2, this study simulated industrial blue sphere recognition and conducted
experimental verification on the TurtleBot3 platform. The visual detection logic was optimized by
dynamically adjusting the color space parameters (such as the HSV range) and contour recognition
threshold corresponding to the blue target. The left-hand interface (such as the RViz visual topic
window) displays the adjusted configuration status. In the real-time camera image, the blue sphere
target is accurately marked. Experimental results further verify that this solution does not require
high-computing power modules and can be adapted to conventional computing platforms.

Figure 2. Visual recognition effect of the sphere

2.3. Multimodal perception fusion and dynamic obstacle avoidance

The perception blind spots of a single sensor can easily lead to the failure of the robot's obstacle
avoidance or deviation in task coordination in complex scenarios. Multimodal perception fusion has
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become the core technical direction of dynamic obstacle avoidance and task coordination by
complementing the performance advantages of different sensors (such as visual target recognition
capabilities and lidar's depth perception capabilities). Existing research focuses on the two core
aspects of "perception accuracy" and "platform adaptability". Misir et al. proposed an improved
MobileNetV2 model to fuse the distance information of the ultrasonic sensor with the visual image.
They assisted the obstacle avoidance decision by superimposing warning signs on the image. This
dual-modal solution performed stably in medium and short-range obstacle detection, but the
ultrasonic reflection angle easily affected the recognition of low obstacles [7]. Yang et al. pointed
out that "vision + LiDAR" fusion can effectively compensate for the shortcomings of vision in depth
judgment and improve the accuracy of obstacle positioning in complex environments through point
cloud data. However, its point cloud processing process requires high computing power and is more
suitable for high-performance robot platforms [17].

Regarding the collaborative logic and practical optimization of multimodal fusion, a technical
framework for coordinating multi-source sensor fusion and trajectory planning is proposed for
wheeled robots navigating unstructured environments. The core is to build an environmental
perception model by fusing visual and lidar data to achieve a closed loop of "real-time perception-
dynamic trajectory adjustment". The core conclusion that the perception accuracy determines the
rationality of the trajectory provides theoretical support for the relationship between sensor data
quality and obstacle avoidance efficiency in multimodal solutions. At the same time, its lightweight
optimization ideas also provide a feasible direction for adapting conventional platforms [18].
Soualhi et al. [19,17] further expand this collaborative framework by integrating motion perception
with deep reinforcement learning, devising a visual control strategy to mitigate response delays in
dynamic environments  — a method that strengthens the link between real-time environmental
perception and agile decision-making in fast-evolving scenarios. The LQR control right dynamic
allocation framework transfers the task priority logic in human-machine collaboration to the robot
scene, providing an engineering decision reference for the connection between "obstacle avoidance
action and target processing task" (such as avoiding obstacles first and then executing target-related
operations), which is particularly suitable for multi-task parallel scenarios [20].

In addition, the “vision + infrared” fusion solution has also attracted attention. This solution uses
infrared sensors to detect low obstacles that are difficult to identify visually, further enriching the
perception dimension. However, in current research, the triggering logic of multi-sensor
collaboration (such as when to enable infrared and when to rely on vision) is still mainly
customized, and a standardized process adapted to conventional robots has not yet been formed. It
can be further optimized based on specific scenario requirements [21]. From the perspective of
existing research, multimodal perception fusion technology has formed various exploration paths in
the field of robot obstacle avoidance: dual-modal fusion (such as vision + ultrasound, vision +
LiDAR) has proven its effectiveness in specific scenarios, and literature also provides theoretical
and engineering references for multimodal collaborative logic and lightweight adaptation. These
explorations cover the technical characteristics of different sensor combinations and form
preliminary optimization strategies tailored to the adaptation requirements of conventional robotic
platforms, laying the foundation for the practical application of multimodal technology.

3.  Future directions

Combined with the current research status of visual perception-driven robot navigation and obstacle
avoidance technology, future research can focus on breakthroughs in the four core directions of
"unstructured scene adaptation, complex interference robustness, multimodal standardization, and
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system-level integration." To address the limited positioning accuracy of visual SLAM in
unstructured environments, lightweight fusion of vision with low-cost lidar and infrared sensors can
be promoted to supplement depth and low-obstacle information. Simultaneously, lightweight motion
prediction modules can be integrated to minimize the interference of dynamic objects on map
construction. Regarding visual target recognition, it is necessary to focus on developing lightweight
deep learning models suitable for conventional platforms and to deepen the cross-spectral feature
fusion and cross-scene parameter adaptation mechanisms to solve the problem of recognition failure
caused by light fluctuations and occlusion. In ​​multimodal fusion, a standardized framework for
sensor priority decision-making should be established, shifting to feature-level fusion to reduce
computing power and adapt to low-cost robots. Furthermore, an end-to-end integrated framework
for "navigation-recognition-interaction" should be developed and validated with low-cost hardware
solutions to advance the technology from module optimization to engineering implementation.

4.  Conclusion

Visual perception technology is the core link for robots interacting with complex environments. Its
collaboration with SLAM navigation, target recognition, and multimodal fusion has become a key
path for robots to achieve autonomous navigation and dynamic obstacle avoidance. This article
systematically sorts out the research progress in this field, focusing on the three core technology
modules to summarize the current status: In the field of visual SLAM and autonomous navigation
collaboration, existing research has formed a mature pattern of "high-precision 3D solution" and
"lightweight 2D solution" in parallel. The high-precision solution effectively improves the
positioning accuracy of dynamic scenes, and the lightweight solution is fully adapted to
conventional robot platforms. Based on experiments conducted with low-cost robots, this study
further verified the practicality of lightweight SLAM in simulating industrial narrow channel scenes,
providing a practical reference for applications in medium and low complexity scenes. In terms of
visual target recognition optimization, traditional algorithms ensure the recognition stability of low-
texture scenes through feature matching technology, and deep learning technology has significantly
enhanced environmental adaptability and robustness. Explorations such as cross-spectral fusion and
dynamic parameter adjustment provide multiple feasible paths for optimizing the recognition logic
of conventional platforms. In the field of multimodal perception fusion, the dual-modal solution has
been verified to be effective in many specific scenarios. Related research on multi-source fusion
framework and task priority decision logic provides a solid theoretical support for multimodal
collaboration, "vision + infrared" Solutions such as these have further enriched the robot's
perception dimension, accumulating a sufficient technical foundation for obstacle avoidance and
task collaboration in complex scenarios. In summary, current robot navigation and obstacle
avoidance technologies based on visual perception have achieved outstanding results in structured
scene adaptation, single-function optimization, and engineering exploration. By sorting out the
technical context and practical value, this review provides a clear direction for subsequent research,
helping this technology steadily transition from laboratory verification to low-cost industrial
applications, and laying a solid theoretical and practical foundation for designing robot systems in
low- and medium-complexity scenarios.
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