References
[1]. A. T. Hamada and M. F. Orhan, “An overview of regenerative braking systems, ” J. Energy Storage, vol. 52, p. 105033, Aug. 2022, doi: 10.1016/j.est.2022.105033.
[2]. --“EU-DG-TREN, EU energy in figures 2010, CO2 Emissions by Sector, European Commission directorate general for energy and transport, ” 2010.
[3]. A. Gabriel-Buenaventura and B. Azzopardi, “Energy recovery systems for retrofitting in internal combustion engine vehicles: A review of techniques, ” Renew. Sustain. Energy Rev., vol. 41, pp. 955–964, Jan. 2015, doi: 10.1016/j.rser.2014.08.083.
[4]. A. J. Stratton and J. B. Heywood, “Impact of regenerative braking on hybrid vehicle fuel economy”.
[5]. --“The Oerlikon electrogyro—Its development and application for omnibus service, ” Autom Eng, no. 45, pp. 559–566, 1955.
[6]. --“Gyrobus: A Great Idea Takes a Spin, ” June 09, 2015. [Online]. Available: http: //photo.proaktiva.eu/digest/2008_g yrobus.html
[7]. B. Bolund, H. Bernhoff, and M. Leijon, “Flywheel energy and power storage systems, ” Renew. Sustain. Energy Rev., vol. 11, no. 2, pp. 235–258, Feb. 2007, doi: 10.1016/j.rser.2005.01.004.
[8]. Talreja, & R. “Fatigue of composite materials: damage mechanisms and fatigue-life diagrams, ” Proc. R. Soc. Lond. Math. Phys. Sci., vol. 378, no. 1775, pp. 461–475, Nov. 1981, doi: 10.1098/rspa.1981.0163.
[9]. --“Faurecia partners with CEA on stack R& D, ” Fuel Cells Bull., vol. 2017, Issue 11, pp. 11–12, 2017, doi: 10.1016/S1464-2859(17)30394-2.
[10]. M. A. Abdelkareem et al., “Heat pipe-based waste heat recovery systems: Background and applications, ” Therm. Sci. Eng. Prog., vol. 29, p. 101221, Mar. 2022, doi: 10.1016/j.tsep.2022.101221.
[11]. F. Fatigati, D. Di Battista, and R. Carapellucci, “Model-based assessment of a feedforward-feedback control strategy for ORC-based unit in waste heat recovery application, ” Appl. Therm. Eng., vol. 258, p. 124774, Jan. 2025, doi: 10.1016/j.applthermaleng.2024.124774.
[12]. A. Marvão, P. J. Coelho, and H. C. Rodrigues, “Optimization of a thermoelectric generator for heavy-duty vehicles, ” Energy Convers. Manag., vol. 179, pp. 178–191, Jan. 2019, doi: 10.1016/j.enconman.2018.10.045.
[13]. X. Ping et al., “Prediction and optimization of power output of single screw expander in organic Rankine cycle (ORC) for diesel engine waste heat recovery, ” Appl. Therm. Eng., vol. 182, p. 116048, Jan. 2021, doi: 10.1016/j.applthermaleng.2020.116048.
[14]. K. Shen, L. Chang, H. Chen, Z. Zhang, B. Wang, and Y. Wang, “Experimental study on the effects of exhaust heat recovery system (EHRS) on vehicle fuel economy and emissions under cold start new European driving cycle (NEDC), ” Energy Convers. Manag., vol. 197, p. 111893, Oct. 2019, doi: 10.1016/j.enconman.2019.111893.
[15]. S. Yu, Q. Du, H. Diao, G. Shu, and K. Jiao, “Effect of vehicle driving conditions on the performance of thermoelectric generator, ” Energy Convers. Manag., vol. 96, pp. 363–376, May 2015, doi: 10.1016/j.enconman.2015.03.002.
[16]. L. Shi, G. Shu, H. Tian, and S. Deng, “A review of modified Organic Rankine cycles (ORCs) for internal combustion engine waste heat recovery (ICE-WHR), ” Renew. Sustain. Energy Rev., vol. 92, pp. 95–110, Sept. 2018, doi: 10.1016/j.rser.2018.04.023.
[17]. F. Zhou, S. N. Joshi, R. Rhote-Vaney, and E. M. Dede, “A review and future application of Rankine Cycle to passenger vehicles for waste heat recovery, ” Renew. Sustain. Energy Rev., vol. 75, pp. 1008–1021, Aug. 2017, doi: 10.1016/j.rser.2016.11.080.
[18]. O. Nett and A. Salomon, “Experimental analysis of engine out emissions of a light-duty diesel engine during warm-up under cold start conditions, ” Transp. Eng., vol. 10, p. 100128, Dec. 2022, doi: 10.1016/j.treng.2022.100128.
[19]. M. Moses-DeBusk et al., “Detailed hydrocarbon speciation and particulate matter emissions during cold-start from turbocharged and naturally aspirated trucks, ” Fuel, vol. 350, p. 128804, Oct. 2023, doi: 10.1016/j.fuel.2023.128804.
[20]. X. Duan, J. Fu, Z. Zhang, J. Liu, D. Zhao, and G. Zhu, “Experimental study on the energy flow of a gasoline-powered vehicle under the NEDC of cold starting, ” Appl. Therm. Eng., vol. 115, pp. 1173–1186, Mar. 2017, doi: 10.1016/j.applthermaleng.2016.10.002.
[21]. C. Wang, F. Yang, H. Zhang, R. Zhao, and Y. Xu, “Energy recovery efficiency analysis of organic Rankine cycle system in vehicle engine under different road conditions, ” Energy Convers. Manag., vol. 223, p. 113317, Nov. 2020, doi: 10.1016/j.enconman.2020.113317.
[22]. X. Ping et al., “Dynamic response assessment and multi-objective optimization of organic Rankine cycle (ORC) under vehicle driving cycle conditions, ” Energy, vol. 263, p. 125551, Jan. 2023, doi: 10.1016/j.energy.2022.125551.
[23]. Hopmann, U., & Algrain, M. C., “Diesel engine electric turbo compound technology, ” SAE Tech. Pap., no. 2003-01–2294, 2003.
[24]. Ibaraki, S., Yamashita, Y., Sumida, K., Ogita, H., & Jinnai, Y., “Development of the hybrid turbo, an electrically assisted turbocharger, ” 2006.
[25]. Kattwinkel, T., Weiss, R., and Boeschlin, J., “Mechatronic Solution for Electronic Turbocharger, ” SAE Tech. Pap., no. 2003-01–0712, p. 200, 2003.
[26]. P. S. Divekar, B. Ayalew, and R. Prucka, “Coordinated Electric Supercharging and Turbo-Generation for a Diesel Engine, ” presented at the SAE 2010 World Congress & Exhibition, Apr. 2010, pp. 2010-01–1228. doi: 10.4271/2010-01-1228.
[27]. Arsie, I., Cricchio, A., Pianese, C., De Cesare, M., & Nesci, W., “A comprehensive powertrain model to evaluate the benefits of electric turbo compound (ETC) in reducing CO2 emissions from small diesel passenger cars, ” SAE Tech. Pap., no. 2014-01–1650, 2014.
[28]. J. Ko, S. Ko, H. Son, B. Yoo, J. Cheon, and H. Kim, “Development of Brake System and Regenerative Braking Cooperative Control Algorithm for Automatic-Transmission-Based Hybrid Electric Vehicles, ” IEEE Trans. Veh. Technol., vol. 64, no. 2, pp. 431–440, Feb. 2015, doi: 10.1109/tvt.2014.2325056.
[29]. Z. Meng, T. Zhang, H. Zhang, Q. Zhao, and J. Yang, “Energy Management Strategy for an Electromechanical-Hydraulic Coupled Power Electric Vehicle Considering the Optimal Speed Threshold, ” Energies, vol. 14, no. 17, p. 5300, Aug. 2021, doi: 10.3390/en14175300.
[30]. E. Pipitone and G. Vitale, “A regenerative braking system for internal combustion engine vehicles using supercapacitors as energy storage elements - Part 2: Simulation results, ” J. Power Sources, vol. 448, p. 227258, Feb. 2020, doi: 10.1016/j.jpowsour.2019.227258.
[31]. S. B. Chaganti and B. Chaganti, “KAMMA Gear Flywheel Hybrid Perpetual Mechanical Battery, ” in 2023 9th IEEE India International Conference on Power Electronics (IICPE), SONIPAT, India: IEEE, Nov. 2023, pp. 1–4. doi: 10.1109/IICPE60303.2023.10474946.
[32]. A. A. K. Arani, H. Karami, G. B. Gharehpetian, and M. S. A. Hejazi, “Review of Flywheel Energy Storage Systems structures and applications in power systems and microgrids, ” Renew. Sustain. Energy Rev., vol. 69, pp. 9–18, Mar. 2017, doi: 10.1016/j.rser.2016.11.166.
[33]. A. Dhand and K. Pullen, “Review of flywheel based internal combustion engine hybrid vehicles, ” Int. J. Automot. Technol., vol. 14, no. 5, pp. 797–804, Oct. 2013, doi: 10.1007/s12239-013-0088-x.
[34]. M. Hedlund, J. Lundin, J. De Santiago, J. Abrahamsson, and H. Bernhoff, “Flywheel Energy Storage for Automotive Applications, ” Energies, vol. 8, no. 10, pp. 10636–10663, Oct. 2015, doi: 10.3390/en81010636.
[35]. J. Hilton, “Flybrid systems—Mechanical hybrid systems, ” presented at the Proceedings of the Engine Expo 2008, Stuttgart, Germany, May 06, 2008.
[36]. I. Foley, “Williams Hybrid Power—Flywheel Energy Storage, ” presented at the Presentation, 2013. [Online]. Available: http: //www.ukintpress-conferences.com/uploads/SPKPMW13R/d1_s1_p2_ian_foley.pdf
[37]. K. Van Berkel, T. Hofman, B. Vroemen, and M. Steinbuch, “Optimal energy management for a flywheel-based hybrid vehicle, ” in Proceedings of the 2011 American Control Conference, San Francisco, CA: IEEE, June 2011, pp. 5255–5260. doi: 10.1109/ACC.2011.5990820.
[38]. B. Jin et al., “Parametric study on a novel steam injected inverted Brayton cycle system recovering waste heat from the internal combustion engine, ” Appl. Therm. Eng., vol. 274, p. 126774, Sept. 2025, doi: 10.1016/j.applthermaleng.2025.126774.
[39]. M. M. Zia et al., “Analysis of Rankine Heat Engine Cycle and Optimization of Cycle Efficiency Between Maximum and Minimum Working Pressures, ” 2024, doi: 10.13140/RG.2.2.32676.69764.
[40]. Q. Tang, J. Fu, J. Liu, F. Zhou, and X. Duan, “Study of Energy-Saving Potential of Electronically Controlled Turbocharger for Internal Combustion Engine Exhaust Gas Energy Recovery, ” J. Eng. Gas Turbines Power, vol. 138, no. 11, Nov. 2016, doi: 10.1115/1.4033535.
[41]. K. Ekberg and L. Eriksson, “Improving Fuel Economy and Acceleration by Electric Turbocharger Control for Heavy Duty Long Haulage, ” IFAC-Pap., vol. 50, no. 1, pp. 11052–11057, July 2017, doi: 10.1016/j.ifacol.2017.08.2486.