References
[1]. B. Ge, D. Sun, W. Wu, and F. Z. Peng, “Winding Design, Modeling, and Control for Pole-Phase Modulation Induction Motors, ” IEEE Trans. Magn., vol. 49, no. 2, pp. 898–911, Feb. 2013, doi: 10.1109/TMAG.2012.2208652.
[2]. E. Libbos, E. Krause, A. Banerjee, and P. T. Krein, “Winding Layout Considerations for Variable-Pole Induction Motors in Electric Vehicles, ” IEEE Trans. Transp. Electrification, vol. 9, no. 4, pp. 5214–5225, Dec. 2023, doi: 10.1109/TTE.2023.3248444.
[3]. I. Karatzaferis, E. C. Tatakis, and N. Papanikolaou, “Investigation of Energy Savings on Industrial Motor Drives Using Bidirectional Converters, ” IEEE Access, vol. 5, pp. 17952–17961, 2017, doi: 10.1109/ACCESS.2017.2748621.
[4]. S. Heydari, P. Fajri, M. Rasheduzzaman, and R. Sabzehgar, “Maximizing Regenerative Braking Energy Recovery of Electric Vehicles Through Dynamic Low-Speed Cutoff Point Detection, ” IEEE Trans. Transp. Electrification, vol. 5, no. 1, pp. 262–270, Mar. 2019, doi: 10.1109/TTE.2019.2894942.
[5]. B. Sun, T. Gu, B. Li, P. Wang, S. Gao, and S. Wei, “Design and application of electromechanical flywheel hybrid device for electric vehicle, ” Energy Rep., vol. 8, pp. 12570–12582, Nov. 2022, doi: 10.1016/j.egyr.2022.09.078.
[6]. N. Farrokhzad Ershad, R. Tafazzoli Mehrjardi, and M. Ehsani, “High-Performance 4WD Electric Powertrain With Flywheel Kinetic Energy Recovery, ” IEEE Trans. Power Electron., vol. 36, no. 1, pp. 772–784, Jan. 2021, doi: 10.1109/TPEL.2020.3004866.
[7]. R.-C. Talawo, B. E. M. Fotso, and M. Fogue, “An experimental study of a solar thermoelectric generator with vortex tube for hybrid vehicle, ” Int. J. Thermofluids, vol. 10, p. 100079, May 2021, doi: 10.1016/j.ijft.2021.100079.
[8]. S.-K. Kim, B.-C. Won, S.-H. Rhi, S.-H. Kim, J.-H. Yoo, and J.-C. Jang, “Thermoelectric Power Generation System for Future Hybrid Vehicles Using Hot Exhaust Gas, ” J. Electron. Mater., vol. 40, no. 5, pp. 778–783, May 2011, doi: 10.1007/s11664-011-1569-1.
[9]. S. Shaharizal, M. R. Ahmad, and H. F. Hawari, “Design and analysis of a hybrid energy harvester for self-powered sensor, ” in TENCON 2017 - 2017 IEEE Region 10 Conference, Nov. 2017, pp. 1016–1021. doi: 10.1109/TENCON.2017.8228006.
[10]. J. C. Jiménez-García, A. Ruiz, A. Pacheco-Reyes, and W. Rivera, “A Comprehensive Review of Organic Rankine Cycles, ” Processes, vol. 11, no. 7, Art. no. 7, July 2023, doi: 10.3390/pr11071982.
[11]. Pablo Rodríguez-deArriba et al., “The potential of transcritical cycles based on CO2 mixtures: An exergy-based analysis, ” Renew. Energy, vol. 199, pp. 1606–1628, Nov. 2022, doi: 10.1016/j.renene.2022.09.041.
[12]. G. Sandrini, D. Chindamo, and M. Gadola, “Regenerative Braking Logic That Maximizes Energy Recovery Ensuring the Vehicle Stability, ” Energies, vol. 15, no. 16, 2022, doi: 10.3390/en15165846.
[13]. B. Güney and H. Kılıç, “Research on Regenerative Braking Systems: A Review, ” Int. J. Sci. Res. IJSR, vol. 9, pp. 160–166, Sept. 2020, doi: 10.21275/SR20902143703.
[14]. R. K. Chidambaram et al., “Effect of Regenerative Braking on Battery Life, ” Energies, vol. 16, no. 14, 2023, doi: 10.3390/en16145303.
[15]. S. Dabral, S. Basak, and C. Chakraborty, “Regenerative Braking Efficiency Enhancement Using Pole-Changing Induction Motor, ” IEEE Trans. Transp. Electrification, vol. 10, no. 3, pp. 7580–7590, Sept. 2024, doi: 10.1109/TTE.2023.3331448.
[16]. J. Kropiwnicki and T. Gawłas, “Energy efficiency of a car driving with regenerative braking, ” Combust. Engines, July 2025, doi: 10.19206/ce-207152.
[17]. A. Boretti, “Advancing sustainable mobility: Integrating flywheel kinetic energy recovery systems with high-efficiency hydrogen internal combustion engines, ” Int. J. Hydrog. Energy, vol. 125, pp. 354–363, May 2025, doi: 10.1016/j.ijhydene.2025.04.094.
[18]. M. E. Amiryar and K. R. Pullen, “A Review of Flywheel Energy Storage System Technologies and Their Applications, ” Appl. Sci., vol. 7, no. 3, 2017, doi: 10.3390/app7030286.
[19]. K. Erhan and E. Özdemir, “Prototype production and comparative analysis of high-speed flywheel energy storage systems during regenerative braking in hybrid and electric vehicles, ” J. Energy Storage, vol. 43, p. 103237, Nov. 2021, doi: 10.1016/j.est.2021.103237.
[20]. R. Takarli et al., “A Comprehensive Review on Flywheel Energy Storage Systems: Survey on Electrical Machines, Power Electronics Converters, and Control Systems, ” IEEE Access, vol. 11, pp. 81224–81255, 2023, doi: 10.1109/ACCESS.2023.3301148.
[21]. S. Rijal, S. K. Labh, Y. Bajgain, D. Bastakoti, and S. Acharya, Recent Advancements in Kinetic Energy Recovery Systems in Automobile. 2023.
[22]. F. Sher et al., “Novel strategies to reduce engine emissions and improve energy efficiency in hybrid vehicles, ” Clean. Eng. Technol., vol. 2, p. 100074, June 2021, doi: 10.1016/j.clet.2021.100074.
[23]. S. Ezzitouni et al., “Electrical Modelling and Mismatch Effects of Thermoelectric Modules on Performance of a Thermoelectric Generator for Energy Recovery in Diesel Exhaust Systems, ” Energies, vol. 14, no. 11, 2021, doi: 10.3390/en14113189.
[24]. M. K. Mahek, M. Ramadan, S. S. bin Dol, M. Ghazal, and M. Alkhedher, “A comprehensive review of thermoelectric cooling technologies for enhanced thermal management in lithium-ion battery systems, ” Heliyon, vol. 10, no. 24, Dec. 2024, doi: 10.1016/j.heliyon.2024.e40649.
[25]. “Electric vehicle battery thermal management system with thermoelectric cooling, ” Energy Rep., vol. 5, pp. 822–827, Nov. 2019, doi: 10.1016/j.egyr.2019.06.016.
[26]. A. Fouda, H. Elattar, S. Rubaiee, A. S. B. Mahfouz, and A. M. Alharbi, “Thermodynamic and Performance Assessment of an Innovative Solar-Assisted Tri-Generation System for Water Desalination, Air-Conditioning, and Power Generation, ” Eng. Technol. Appl. Sci. Res., vol. 12, no. 5, Art. no. 5, Oct. 2022, doi: 10.48084/etasr.5237.
[27]. O. A. Marzouk, “Condenser Pressure Influence on Ideal Steam Rankine Power Vapor Cycle using the Python Extension Package Cantera for Thermodynamics, ” Eng. Technol. Appl. Sci. Res., vol. 14, no. 3, Art. no. 3, June 2024, doi: 10.48084/etasr.7277.
[28]. J. C. Jiménez-García, A. Ruiz, A. Pacheco-Reyes, and W. Rivera, “A Comprehensive Review of Organic Rankine Cycles, ” Processes, vol. 11, no. 7, Art. no. 7, July 2023, doi: 10.3390/pr11071982.
[29]. Peng Liu a b et al., “Experimental study on transcritical Rankine cycle (TRC) using CO2/R134a mixtures with various composition ratios for waste heat recovery from diesel engines, ” Energy Convers. Manag., vol. 208, p. 112574, Mar. 2020, doi: 10.1016/j.enconman.2020.112574.
[30]. “Cascading the Transcritical CO2 and Organic Rankine Cycles with Supercritical CO2 Cycles for Waste Heat Recovery, ” Int. J. Thermofluids, vol. 20, p. 100508, Nov. 2023, doi: 10.1016/j.ijft.2023.100508.
[31]. “Analysis of the thermodynamic performance of transcritical CO2 power cycle configurations for low grade waste heat recovery, ” Energy Rep., vol. 8, pp. 4196–4208, Nov. 2022, doi: 10.1016/j.egyr.2022.03.040.
[32]. “Review of supercritical CO2 power cycle technology and current status of research and development, ” Nucl. Eng. Technol., vol. 47, no. 6, pp. 647–661, Oct. 2015, doi: 10.1016/j.net.2015.06.009.
[33]. “Energy and Exergy Analysis of Transcritical CO2 Cycles for Heat Pump Applications.” Accessed: July 18, 2025. [Online]. Available: https: //www.mdpi.com/2071-1050/16/17/7511
[34]. P. Bouteiller, M.-F. Terrier, and P. Tobaly, “Experimental Study of Heat Pump Thermodynamic Cycles Using CO 2 Based Mixtures -Methodology and First Results, ” 2017, p. 020052. doi: 10.1063/1.4976271.
[35]. “Process design methodology for rankine cycle based on heat matching, ” Renew. Sustain. Energy Rev., vol. 193, p. 114295, Apr. 2024, doi: 10.1016/j.rser.2024.114295.
[36]. “Effects of working fluid on thermal performance and impact force of two-phase closed thermosyphon at low heat flux, ” Int. Commun. Heat Mass Transf., vol. 167, p. 109311, Sept. 2025, doi: 10.1016/j.icheatmasstransfer.2025.109311.
[37]. S. Lück, T. Wittmann, J. Göing, C. Bode, and J. Friedrichs, “Impact of Condensation on the System Performance of a Fuel Cell Turbocharger, ” Machines, vol. 10, p. 59, Jan. 2022, doi: 10.3390/machines10010059.
[38]. P. Dimitriou, R. Burke, Q. Zhang, C. Copeland, and H. Stoffels, “Electric Turbocharging for Energy Regeneration and Increased Efficiency at Real Driving Conditions, ” Appl. Sci., vol. 7, no. 4, Apr. 2017, doi: 10.3390/app7040350.