References
[1]. Wang, J. et al. (2024) ‘Influence of defect in perovskite solar cell materials on device performance and stability’, Acta Physica Sinica, 73(6), p. 063101. doi: 10.7498/aps.73.20231631.
[2]. Zhang, Y. et al. (2023) ‘Improved fatigue behaviour of perovskite solar cells with an interfacial starch–polyiodide buffer layer’, Nature Photonics, 17(12), pp. 1066–1073. doi: 10.1038/s41566-023-01287-w.
[3]. Xie, J. et al. (2022) ‘Reconstructing the amorphous and defective surface for efficient and stable perovskite solar cells’, Science China Materials, 66(4), pp. 1323–1331. doi: 10.1007/s40843-022-2266-9.
[4]. Lin, Y. et al. (2025) ‘A nd@c82-polymer interface for efficient and stable perovskite solar cells’, Nature [Preprint]. doi: 10.1038/s41586-025-08961-9.
[5]. Ying, Z. et al. (2025) ‘Antisolvent seeding of self-assembled monolayers for flexible monolithic perovskite/Cu(In, ga)se2 tandem solar cells’, Nature Energy [Preprint]. doi: 10.1038/s41560-025-01760-6.
[6]. Li, X. et al. (2023) ‘Advances in mixed 2D and 3D perovskite heterostructure solar cells: A comprehensive review’, Nano Energy, 118, p. 108979. doi: 10.1016/j.nanoen.2023.108979.
[7]. Li, C. et al. (2023) ‘Boosting charge transport in a 2D/3D perovskite heterostructure by selecting an ordered 2D perovskite as the passivator’, Angewandte Chemie International Edition, 62(7). doi: 10.1002/anie.202214208.
[8]. Lin, T., Dai, T. and Li, X. (2023) ‘2D/3D perovskite: A step toward commercialization of perovskite solar cells’, Solar RRL, 7(7). doi: 10.1002/solr.202201138.
[9]. Rong, Y. et al. (2018) ‘Challenges for commercializing perovskite solar cells’, Science, 361(6408). doi: 10.1126/science.aat8235.
[10]. Castriotta, L.A. et al. (2025) ‘Transition of Perovskite Solar Technologies to Being Flexible’. Advanced Materials, 37(8), e2408036. doi: 10.1002/adma.202408036.
[11]. Yu, D. et al. (2023) ‘Exploring, identifying, and removing the efficiency-limiting factor of mixed-dimensional 2D/3D perovskite solar cells’, Accounts of Chemical Research, 56(8), pp. 959–970. doi: 10.1021/acs.accounts.3c00015.
[12]. Zhao, X., Liu, T. and Loo, Y. (2021) ‘Advancing 2d perovskites for efficient and stable solar cells: Challenges and opportunities’, Advanced Materials, 34(3). doi: 10.1002/adma.202105849.
[13]. Shan, S. et al. (2025) ‘DMSO‐assisted control enables highly efficient 2D/3D hybrid perovskite solar cells’, Small, 21(7). doi: 10.1002/smll.202410172.
[14]. Metcalf, I. et al. (2023) ‘Synergy of 3D and 2d perovskites for durable, efficient solar cells and beyond’, Chemical Reviews, 123(15), pp. 9565–9652. doi: 10.1021/acs.chemrev.3c00214.
[15]. Sidhik, S. et al. (2022) ‘Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells’, Science, 377(6613), pp. 1425–1430. doi: 10.1126/science.abq7652.
[16]. Wu, G. et al. (2022) ‘Surface passivation using 2D perovskites toward efficient and stable perovskite solar cells’, Advanced Materials, 34(8). doi: 10.1002/adma.202105635.
[17]. Yang, B. et al. (2021) ‘Interfacial passivation engineering of perovskite solar cells with fill factor over 82% and outstanding operational stability on N-I-P architecture’, ACS Energy Letters, 6(11), pp. 3916–3923. doi: 10.1021/acsenergylett.1c01811.
[18]. Tang, M.-C. et al. (2021) ‘Unraveling the compositional heterogeneity and carrier dynamics of alkali cation doped 3d/2d perovskites with improved stability’, Materials Advances, 2(4), pp. 1253–1262. doi: 10.1039/d0ma00967a.
[19]. Luo, L. et al. (2023) ‘Stabilization of 3D/2D perovskite heterostructures via inhibition of ion diffusion by cross-linked polymers for solar cells with improved performance’, Nature Energy [Preprint]. doi: 10.1038/s41560-023-01205-y.
[20]. Sutanto, A.A. et al. (2021) ‘2D/3D perovskite engineering eliminates interfacial recombination losses in hybrid perovskite solar cells’, Chem, 7(7), pp. 1903–1916. doi: 10.1016/j.chempr.2021.04.002.
[21]. Jang, Y.-W. et al. (2021) ‘Intact 2d/3D halide junction perovskite solar cells via solid-phase in-plane growth’, Nature Energy, 6(1), pp. 63–71. doi: 10.1038/s41560-020-00749-7.
[22]. Li, G. et al. (2022) ‘Surface defect passivation by 1, 8-naphthyridine for efficient and stable formamidinium-based 2D/3D perovskite solar cells’, Chemical Engineering Journal, 449, p. 137806. doi: 10.1016/j.cej.2022.137806.