References
[1]. Aravinth, S. S., Nagamani, G., Kumar, C. K., Lasisi, A., Naveed, Q. N., Bhowmik, A., & Khan, W. A. (2025). Dynamic cross-domain transfer learning for driver fatigue monitoring: Multi-modal sensor fusion with adaptive real-time personalizations.Scientific Reports, 15(1), 1–20.
[2]. Yogarayan, S., Razak, S. F. A., Mogan, J. N., Azman, A., & Sivaprakasam, A. (2025). Alertness analytics: AI-enhanced detection of driver fatigue and intoxication. InThe smart life revolution(pp. 21–44). CRC Press.
[3]. Li, D., Zhang, X., Liu, X., Ma, Z., & Zhang, B. (2023). Driver fatigue detection based on comprehensive facial features and gated recurrent unit.Journal of Real-Time Image Processing, 20(2), 19.
[4]. Li, Q. (2024). Advancements in driver fatigue detection: A comprehensive analysis of eye movement and facial feature approaches.Applied and Computational Engineering, 65, 75–80.
[5]. Ekinci, E., Kahraman, K., & Oturakci, M. (2025). Enhancing driver safety: Integrating ECG and CAN-Bus data for accurate drowsiness detection.Traitement du Signal, 42(2), 1057.
[6]. Chang, H., & Park, D. (2020). Potentialities of vehicle trajectory big data for monitoring potentially fatigued drivers and explaining vehicle crashes on motorway sections.Sustainability, 12(15), 5877.
[7]. Li, W. (2024). Driver fatigue detection method based on facial features using deep learning.Applied and Computational Engineering, 57, 190–199.
[8]. Kassem, H. A., Chowdhury, M., & Abawajy, J. H. (2021). Drivers fatigue level prediction using facial and head behavior information.IEEE Access, 9, 121686–121697.
[9]. Wang, J., Cai, M., Zhu, Z., Ding, H., Yi, J., & Du, A. (2025). VTD: Visual and tactile dataset for driver state and behavior detection.IEEE Robotics and Automation Letters.
[10]. Pan, Y., Dong, Y., Wang, D., Cao, S., & Chen, A. (2024). Comparative study on fatigue evaluation of suspenders by introducing actual vehicle trajectory data.Scientific Reports, 14(1), 5165.
[11]. Zhang, T., Chen, J., He, E., & Wang, H. (2021). Sample-entropy-based method for real driving fatigue detection with multichannel electroencephalogram.Applied Sciences, 11(21), 10279.
[12]. Wang, F., Wang, H., Zhou, X., & Fu, R. (2022). A driving fatigue feature detection method based on multifractal theory.IEEE Sensors Journal, 22(19), 19046–19059.
[13]. Han, C., Yang, Y., Sun, X., & Qin, Y. (2018, October). Complexity analysis of EEG signals for fatigue driving based on sample entropy. In2018 11th International Congress on Image and Signal Processing, Biomedical Engineering and Informatics (CISP-BMEI)(pp. 1–9). IEEE.
[14]. Qin, Y., Hu, Z., Chen, Y., Liu, J., Jiang, L., Che, Y., & Han, C. (2022). Directed brain network analysis for fatigue driving based on EEG source signals.Entropy, 24(8), 1093.
[15]. Xiang, W., Wu, X., Li, C., Zhang, W., & Li, F. (2022). Driving fatigue detection based on the combination of multi-branch 3D-CNN and attention mechanism.Applied Sciences, 12(9), 4689.
[16]. Quddus, A., Zandi, A. S., Prest, L., & Comeau, F. J. (2021). Using long short term memory and convolutional neural networks for driver drowsiness detection.Accident Analysis & Prevention, 156, 106107.
[17]. Ed-Doughmi, Y., Idrissi, N., & Hbali, Y. (2020). Real-time system for driver fatigue detection based on a recurrent neuronal network.Journal of Imaging, 6(3), 8.
[18]. Zheng, W. L., & Lu, B. L. (2017). A multimodal approach to estimating vigilance using EEG and forehead EOG.Journal of Neural Engineering, 14(2), 026017.
[19]. Zhou, F., Alsaid, A., Blommer, M., Curry, R., Swaminathan, R., Kochhar, D., ... & Lei, B. (2020). Driver fatigue transition prediction in highly automated driving using physiological features.Expert Systems with Applications, 147, 113204.
[20]. Cao, Z., Chuang, C. H., King, J. K., & Lin, C. T. (2019). Multi-channel EEG recordings during a sustained-attention driving task.Scientific Data, 6(1), 19.
[21]. Nanni, L., Lumini, A., Ghidoni, S., & Maguolo, G. (2020). Stochastic selection of activation layers for convolutional neural networks.Sensors, 20(6), 1626.
[22]. Li, G., Zhang, M., Li, J., Lv, F., & Tong, G. (2021). Efficient densely connected convolutional neural networks.Pattern Recognition, 109, 107610.
[23]. Naidu, G., Zuva, T., & Sibanda, E. M. (2023, April). A review of evaluation metrics in machine learning algorithms. InComputer science on-line conference(pp. 15–25). Cham: Springer International Publishing.
[24]. Xiang, W., Wu, X., Li, C., Zhang, W., & Li, F. (2022). Driving fatigue detection based on the combination of multi-branch 3D-CNN and attention mechanism.Applied Sciences, 12(9), 4689.
[25]. Quddus, A., Zandi, A. S., Prest, L., & Comeau, F. J. (2021). Using long short term memory and convolutional neural networks for driver drowsiness detection.Accident Analysis & Prevention, 156, 106107.
[26]. Kır Savaş, B., & Becerikli, Y. (2022). Behavior-based driver fatigue detection system with deep belief network.Neural Computing and Applications, 34(16), 14053–14065.
[27]. Ed-Doughmi, Y., Idrissi, N., & Hbali, Y. (2020). Real-time system for driver fatigue detection based on a recurrent neuronal network.Journal of Imaging, 6(3), 8.
[28]. Zhang, W., Wang, F., Wu, S., Xu, Z., Ping, J., & Jiang, Y. (2020). Partial directed coherence based graph convolutional neural networks for driving fatigue detection.Review of Scientific Instruments, 91(7).
[29]. Tan, Y. S., Lim, K. M., & Lee, C. P. (2021). Hand gesture recognition via enhanced densely connected convolutional neural network.Expert Systems with Applications, 175, 114797.
[30]. Li, G., Zhang, M., Li, J., Lv, F., & Tong, G. (2021). Efficient densely connected convolutional neural networks.Pattern Recognition, 109, 107610.