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Abstract. Driving fatigue is one of the major contributors to traffic accidents and poses a serious threat to road safety.
Traditional driving fatigue detection methods suffer from limitations such as low classification accuracy, insufficient
generalization ability, and poor noise resistance. To address these issues, this study proposes a novel driving fatigue detection
approach based on an improved dense connection convolutional network. This method innovatively utilizes raw
Electroencephalogram (EEG) signals as input to the model without requiring any data preprocessing, thereby enabling end-to-
end feature extraction and classification. The network enhances information flow within dense blocks to promote feature reuse,
employs multi-scale convolutional layers for feature extraction, and integrates an attention mechanism to assign adaptive weights
to multi-scale feature channels. After completing primary feature extraction through stacked dense blocks and pooling layers, a
multi-class classification function is applied to detect driving fatigue. Experimental results on the SEED-VIG driving fatigue
dataset show that the proposed method achieves an accuracy of 97.32%, a precision of 96.43%, a recall of 95.78%, and an F1-
score of 96.10%. Compared to traditional approaches such as Convolutional Neural Networks (CNN) and Long Short-Term
Memory Networks (LSTM), the accuracy improves by 5.14% and 3.45%, respectively. This study demonstrates that the
proposed method has significant practical value: on one hand, the end-to-end architecture greatly simplifies the complex feature
engineering required by traditional methods; on the other hand, the incorporation of feature reuse and attention mechanisms
substantially enhances the model’s classification performance and generalization capability, providing a new technical
perspective for intelligent driving safety monitoring.
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1. Introduction

Driving fatigue poses a serious threat, as it significantly impairs a driver’s reaction time, judgment, and attention, thereby greatly
increasing the risk of major traffic accidents and endangering both road safety and the lives of vehicle occupants [1]. According
to research data, in China alone, more than 12,000 fatalities occur each year due to fatigue-related traffic accidents, accounting
for 21.3% of all traffic-related deaths [2]. Accurate detection of driving fatigue is therefore of critical importance for improving
road safety and reducing casualties. Effective detection of fatigue not only helps prevent traffic accidents and mitigate associated
social and economic losses, but also provides key technological support for intelligent driving systems, thereby promoting the
development of smart transportation and fostering a safer and more efficient travel environment.

Traditional methods for detecting driving fatigue include facial features [3], eye movement characteristics [4],
Electrocardiogram (ECG) signals [5], and vehicle motion trajectories [6]. Facial feature-based methods assess fatigue levels by
monitoring indicators such as blinking frequency and pupil dilation. However, these methods are highly sensitive to changes in
ambient lighting and are easily affected by external environmental factors [7]. Eye movement-based methods detect fatigue by
tracking eye motion and blink frequency, but these are easily influenced by the driver’s visual condition and may cause
discomfort during prolonged monitoring, potentially impairing driving performance [8]. ECG-based approaches evaluate fatigue
by analyzing heart rate variability and changes in inter-beat intervals. However, these methods require the driver to wear sensors,
which may affect comfort, and individual physiological differences can lead to misjudgments [9]. Vehicle trajectory-based
methods infer the driver’s fatigue state by monitoring driving behaviors such as lane departures or sudden braking. However,
such behaviors may not accurately reflect the driver’s true fatigue level and are often influenced by road conditions and external
environments [10]. In recent years, Electroencephalogram (EEG)-based fatigue detection has gained significant attention and
application. Compared with facial features, eye movements, ECG signals, and vehicle trajectory methods, EEG signals offer
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distinct advantages in fatigue detection. Firstly, EEG signals directly reflect brain activity and are closely associated with
physiological changes related to fatigue, thereby offering higher accuracy. Secondly, EEG signals are not affected by external
factors such as lighting conditions or visual health, providing more stable and reliable fatigue assessment. In addition, EEG-
based monitoring can capture the driver’s fatigue state in real time and provide timely feedback, offering strong real-time
performance and effectiveness. Given these advantages, this study adopts EEG signals for detecting driving fatigue.

In recent years, research on EEG-based driving fatigue detection has made significant progress. Traditional approaches
primarily include Sample Entropy (SampEn), Multifractal Detrended Fluctuation Analysis (MF-DFA), complexity analysis, and
brain network analysis. Zhang et al. investigated the performance of various kernel-based algorithms using SampEn features to
classify fatigued and non-fatigued subjects solely based on non-invasive scalp EEG signals. The results demonstrated that
combining SampEn features with a Support Vector Machine (SVM) classifier achieved the highest classification accuracy of
97.2% [11]. In addition, Wang et al. proposed an MF-DFA method to detect fatigue caused by prolonged driving by extracting
EEG signals in the θ (4–7 Hz) and β (14–32 Hz) frequency bands. The results indicated that with increased driving duration,
multifractal spectrum features of EEG signals—such as Hurst exponent width, spectral width, and symmetry—changed
significantly [12]. Han et al. developed a simulated driving experimental platform based on Unity3D software to design
experiments for simulating fatigue driving. The results showed that under fatigue conditions, the randomness of neuronal activity
significantly decreased, and the complexity of brain activity was reduced, as evidenced by the marked weakening of β waves in
the frontal and central regions [13]. Qin et al. proposed a directional brain network method based on EEG source signals to
investigate the impact of driving fatigue on the brain’s information processing capacity. The experiments revealed that as driving
time increased, both the average clustering coefficient and average path length grew, while the global efficiency of most EEG
rhythms declined [14]. However, EEG-based fatigue detection methods using SampEn have limited sensitivity in capturing
subtle variations in EEG signals and are susceptible to noise interference, which undermines classification accuracy. MF-DFA-
based methods, while effective, involve complex multiscale segmentation and detrending operations, resulting in high
computational cost and difficulty in meeting the real-time demands of actual driving scenarios. Complexity analysis methods are
highly sensitive to physiological noise such as eye movements and electromyographic signals, which interfere with the
calculation of complexity metrics and compromise both accuracy and reliability. Brain network analysis methods also face
challenges due to significant inter-individual differences in EEG frequency, amplitude, and brain activity patterns. These
variations in fatigue expression among drivers make it difficult to establish a universal detection model, necessitating individual-
specific optimization, which increases implementation complexity.

In recent years, deep learning methods have been increasingly applied in the field of driving fatigue detection. For example,
Xiang et al. proposed a fatigue detection system based on a three-dimensional Convolutional Neural Network (CNN) combined
with a channel attention mechanism. Experimental results showed that the system achieved a classification accuracy of 95% on
the FDF dataset, indicating its effectiveness for fatigue detection in driving scenarios [15]. Quddus et al. used Long Short-Term
Memory (LSTM) cells to simulate eye movements, employing two types of LSTM: a one-dimensional LSTM (R-LSTM) as the
baseline, and a convolutional LSTM (C-LSTM) designed to directly process two-dimensional image inputs. Results
demonstrated high system effectiveness, with the R-LSTM-based approach achieving approximately 82% accuracy, and the C-
LSTM-based method achieving between 95% and 97% accuracy [16]. Ed-Doughmi et al. proposed a method for analyzing and
predicting driver drowsiness by applying a Recurrent Neural Network (RNN) to sequential frames of the driver’s facial images.
The system achieved an accuracy of approximately 92%, demonstrating the potential for real-time driver monitoring systems
aimed at reducing road accidents [17]. However, EEG-based fatigue detection methods using CNN face significant challenges.
EEG signals are highly susceptible to artifacts caused by eye movements and environmental noise, requiring complex
preprocessing and noise suppression techniques to ensure detection accuracy and stability. EEG-based fatigue detection methods
using LSTM also encounter difficulties, as they demand large volumes of well-annotated EEG data. In real driving scenarios, it is
difficult to obtain sufficient and accurately labeled data, which can lead to unstable model performance or overfitting. Similarly,
when applying RNN to EEG-based fatigue detection, the presence of substantial noise and artifacts in EEG signals impairs the
network’s ability to extract meaningful features, resulting in suboptimal performance in filtering noise and capturing effective
signal patterns.

In light of the limitations of the aforementioned methods, this study adopts an improved dense connection network for
detecting driver fatigue. The improved dense connection network significantly enhances feature reuse and gradient propagation
efficiency through a unique cross-layer dense connectivity mechanism. Instead of simple summation, each layer receives as input
a concatenation of the feature maps from all preceding layers, resulting in multi-scale feature fusion. This approach effectively
reduces parameter redundancy while enhancing the model’s representational capacity. In addition, the use of short-path gradient
propagation alleviates the vanishing gradient problem in deep networks. The incorporation of modular dense blocks and
transition layers further ensures a balance between computational efficiency and model depth.
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2. Dataset

2.1. SEED-VIG dataset

The experimental data used in this study are drawn from the SEED-VIG fatigue database established by the Center for Brain-like
Computing and Machine Intelligence, Department of Computer Science and Engineering, Shanghai Jiao Tong University. During
the experiment, the research team developed a simulated driving system to collect EEG signals and employed an eye tracker
(SMI Eye-Tracking Glasses) to record the percentage of eyelid closure (Perclos), which was then used to annotate the EEG data
[18]. The simulated driving scenario primarily featured straight and monotonous roads, which are more likely to induce driver
fatigue. Perclos is an indicator used to measure the level of driver fatigue. It is defined as the ratio of the time during which the
eyelids are closed to the total time within a given time window. When a person is awake and alert, the eyelid closure frequency is
relatively low; however, as fatigue increases, the frequency and duration of eyelid closure tend to rise. The Perclos value ranges
between 0 and 1, with higher values indicating greater fatigue. Therefore, monitoring the driver’s eyelid closure level provides an
effective means of estimating their fatigue state.

Perclos is evaluated by detecting the driver’s eyelid status using cameras or sensors, and then calculating the percentage of
eyelid closure [19]. The calculation of Perclos is expressed by Equation (1), which is the ratio of eyelid closure time to the total
time within a given time window.

(1)

Generally, when the Perclos value reaches 70%, the driver can be considered to be in a state of fatigue and should take a rest
or make adjustments accordingly. Therefore, Perclos serves as an effective indicator to help drivers detect fatigue in a timely
manner, thereby enhancing road safety.

2.2. Fatigue dataset

The public dataset used in this experiment was proposed by Cao et al. in 2018. They conducted a total of 62 driving simulator
experiments, each lasting 90 minutes, collecting 32-channel EEG data from 27 different subjects [20]. The experiment simulated
a nighttime four-lane highway driving environment, where subjects were instructed to keep the vehicle centered within the lane.
Random lane departure events were introduced, causing the vehicle to drift either left or right from the original cruising path.
The subjects were required to respond immediately by steering the wheel to return the vehicle to its initial cruising lane. To avoid
interference from other factors during driving, subjects were prohibited from controlling the accelerator or brake pedals, with
only steering wheel operation allowed. Each lane departure event comprised three phases: vehicle drift onset, driver reaction
initiation, and driver correction. The experiment recorded the timestamp of each event, and the difference between reaction
initiation time and drift onset time was defined as the reaction time (RT). EEG signals were simultaneously recorded. Typically,
the next lane departure event would begin 5 to 10 seconds after the completion of the previous event. If a subject fell asleep, no
feedback was provided to prompt continuation of the experiment. EEG data were recorded using 32 Ag/AgCl electrodes,
positioned according to the international 10-20 system, including Fp1, Fp2, F7, F3, FZ, F4, F8, FT7, FC3, FCZ, FC4, FT8, T3,
C3, CZ, C4, T4, TP7, CP3, CPZ, CP4, TP8, A1, T5, P3, PZ, P4, T6, A2, O1, OZ, and O2. Electrodes A1 and A2 served as
reference electrodes. The EEG signals were sampled at a frequency of 500 Hz.

3. Method

3.1. Fundamental theory

3.1.1. Convolutional Neural Network

A typical Convolutional Neural Network (CNN) consists of convolutional layers, pooling layers, fully connected layers, Batch
Normalization (BN) layers, and activation layers [21]. The convolutional layers perform convolution operations by sliding
convolutional kernels across the input, sequentially extracting features that contain localized information. Each convolutional
kernel outputs a specific type of feature extracted from the input. The shared parameter weights of convolutional kernels confer
an advantage, as CNNs require fewer parameters compared to fully connected neural networks, thereby reducing the risk of
model overfitting. The convolution operation can be mathematically expressed as:

PERCLOS =
eye _ closing_time

total _ time
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(2)

In the equation:    denotes the   th layer of the network;    represents the input to the   th convolutional layer;   
denotes the output of the   th convolutional layer;    is the convolution kernel’s weight;    is the corresponding bias;   
represents the convolution operation.

Pooling layers are typically added after convolutional layers. The feature maps output by the convolutional layers are input to
the pooling layers for downsampling, which reduces the data dimensionality. Max pooling and average pooling are commonly
used pooling operations. Max pooling outputs the maximum value within the pooling region, while average pooling outputs the
average value of all values within the pooling region. Both operations achieve downsampling and perform a limited amount of
feature extraction.

The batch normalization (BN) layer normalizes the data by computing the mean and variance, ensuring that the data follows a
consistent distribution and becomes more stable. This accelerates the network training process and enables the model to converge
faster. The BN operation can be expressed as:

(3)

In Equation (3):    is the mean of the input values in the current batch;    is the variance of these input values;    is a very
small constant added to prevent division by zero.

Activation functions enhance the model's nonlinear representation capability. The activation functions used in this study
include ReLU6 and h-swish, which are defined as follows:

(4)

(5)

3.1.2. Dense connection convolutional network

As shown in Figure 1, the dense connection convolutional network, currently one of the most advanced CNN architectures,
further enhances information flow between layers based on the residual network, alleviating gradient degradation and
suppressing overfitting. The dense connection convolutional network consists of dense blocks and transition layers. Dense blocks
employ a novel connectivity pattern in which the outputs of all preceding layers are used as inputs to the current layer, and the
output of the current layer is passed on as input to all subsequent layers [22]. While residual blocks in residual networks include
two convolutional layers and skip connections, dense blocks build upon this by adding additional inter-layer connections beyond
the two convolutional layers and skip connections. These additional connections enable repeated reuse of input features, ensuring
maximal information flow. Transition layers consist of convolutional layers and pooling layers, primarily serving to reduce the
spatial dimensions of feature maps. In the improved dense connection convolutional network, the transition layer contains only a
max pooling layer.
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Figure 1. Densely connected convolution network

3.1.3. Attention mechanism

The attention mechanism is inspired by the physiological behavior of human vision. When observing objects, humans tend to
focus their attention on the most salient features. Accordingly, a channel attention mechanism is introduced to weight the feature
map channels produced by multi-scale convolution operations within dense blocks, thereby enhancing the model’s
representational capacity. Typical channel attention mechanisms, such as SENet, apply Global Average Pooling (GAP) to the
input feature maps to obtain a one-dimensional vector (where each feature map is downsampled to a single value). This vector is
then passed through fully connected layers, and a Softmax classifier outputs a one-dimensional vector whose dimension equals
the number of feature map channels. This vector is used to weight each channel of the feature map. However, the use of fully
connected layers involves multiple dimensional transformations, which increases the number of model parameters and can result
in the loss of useful information to some extent. Therefore, this study adopts the Efficient Channel Attention (ECA) module, a
local cross-channel attention mechanism that avoids dimensionality reduction. Furthermore, based on the original ECA module,
Global Max Pooling (GMP) is incorporated to extract more comprehensive features than single pooling alone.

As shown in Figure 2, channel features are extracted through two pooling methods, producing two one-dimensional vectors
with dimensions equal to the number of channels. These vectors are then processed by convolution operations using a shared
convolution kernel of size 1×3, generating two distinct one-dimensional representations. After fusing these representations into a
single one-dimensional vector, it is used to weight the input feature maps. Experimental results demonstrate that the introduction
of the improved ECA attention module contributes to enhancing the model’s robustness in fault diagnosis under varying working
conditions.
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Figure 2. Improved ECA attention module

3.2. Fault diagnosis based on improved dense connection convolutional network

3.2.1. Dense block construction

The constructed dense block is illustrated in Figure 3. Each convolutional layer contains two types of convolution kernels, 1×5
and 1×3, enabling multi-scale feature extraction. The features extracted by these two kernels at different scales are stacked and
then fused with the input features through a concatenation connection. To ensure dimensional consistency, a 1×1 convolution
kernel is applied on the concatenation path to increase the feature dimension. The fused features are then adjusted by the
improved ECA attention module to reweight the channels and enhance the expressive capability. The number of convolution
kernels used in all dense blocks of the improved dense connection convolutional network is listed in Table 1. All convolution
strides are set to 1, and all network layers adopt a pre-activation scheme (Batch Normalization → ReLU → Convolutional Layer)
to reduce model complexity and accelerate convergence.
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Figure 3. Dense block

Table 1. Parameters of dense blocks

Dense Block Convolutional Layer
Kernel Size

1×5 1×3 1×1

Dense Block 1
Convolutional Layer 1 32 32 64
Convolutional Layer 2 32 32 64

Dense Block 2
Convolutional Layer 1 32 32 64
Convolutional Layer 2 32 32 64

Dense Block 3
Convolutional Layer 1 64 64 128
Convolutional Layer 2 64 64 128

Dense Block 4
Convolutional Layer 1 64 64 128
Convolutional Layer 2 64 64 128

3.2.2. Improved dense connection convolutional network structure

The structure of the improved dense connection convolutional network is illustrated in Figure 4. The first layer employs 32 large-
scale convolution kernels of size 1×64 with a stride of 16. Using large-scale convolution kernels increases the receptive field
without deepening the network, enabling the extraction of more information, noise suppression, and dimensionality reduction.
This is followed by a max pooling layer that reduces the size of the feature maps, thereby decreasing the number of parameters
input to the dense blocks. Pooling layers mainly serve to reduce dimensionality. To minimize data loss during downsampling, all
max pooling layers are set to a size of 1×2. After the first pooling layer, the main feature extraction part of the network consists
of alternating dense blocks and max pooling layers of size 1×2. Given that the input data are one-dimensional EEG signals, and
considering that EEG signals are more sensitive to the maximum values within a region, max pooling is selected for
downsampling. The network comprises a total of four dense blocks and three max pooling layers. Following the final dense
block, a global average pooling layer replaces the fully connected layer. Dropout is introduced to suppress overfitting. After
feature extraction is complete, a Softmax classifier performs the classification task. The raw one-dimensional EEG signal is
directly used as the model input without any data preprocessing, enabling an end-to-end fault diagnosis task. The related
parameter settings are as follows: batch size is 32; the loss function is cross-entropy; dropout rate is 0.5; a learning rate decay
strategy is applied, starting at 0.01 and decaying by a factor of 10 every 50 epochs; the optimizer used is Adam; and the total
number of training epochs is 200.
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Figure 4. Improved dense connection convolutional network

3.3. Evaluation metrics

In machine learning classification tasks, accuracy, precision, recall, and F1 score are commonly used evaluation metrics [23].
(1) Accuracy measures the overall proportion of correct predictions made by the model and is calculated by the formula:

(6)

(2) Precision focuses on the proportion of samples predicted as positive that are actually positive, reflecting the reliability of
the predictions. The formula is:

(7)

(3) Recall reflects the proportion of actual positive samples that are correctly predicted, indicating the model’s coverage
capability. The formula is:

(8)

(4) The F1 score is the harmonic mean of precision and recall, used to balance both metrics, and is especially suitable for
scenarios with class imbalance. The formula is:

(9)

These metrics evaluate model performance from different perspectives: accuracy is suitable for balanced datasets, while
precision and recall focus more on the quality of positive class predictions, and the F1 score provides a comprehensive balance
between the two.

Among these, TP (True Positive) refers to the number of samples correctly predicted as positive by the model, i.e., samples
that are actually positive and predicted as positive. TN (True Negative) refers to the number of samples correctly predicted as
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negative by the model, i.e., samples that are actually negative and predicted as negative. FP (False Positive) refers to samples that
are incorrectly predicted as positive, also known as “false alarms.” FN (False Negative) refers to samples that are incorrectly
predicted as negative, i.e., missed detections. These four metrics form the core of the confusion matrix, which is used to calculate
performance metrics such as accuracy, precision, and recall.

4. Results

4.1. SEED-VIG dataset detection results

This study selected the SEED-VIG dataset for detection. The dataset contains data from a total of 23 subjects. From this dataset,
800 EEG data samples were selected, with 400 samples representing the awake state and 400 samples representing the fatigue
state. The training-to-testing split ratio was set to 8:2. The deep learning model was implemented in Python and executed in the
PyTorch environment, with 500 training iterations. The classification results on this dataset are shown in Table 2.

Table 2. Classification results on the SEED-VIG dataset

Evaluation Metric Accuracy Precision Recall F1 Score
Value (%) 97.32 96.43 95.78 96.10

As shown in Table 2, the model demonstrates outstanding performance. An accuracy of 97.32% indicates a very high overall
correctness in the model’s predictions. A precision of 96.43% signifies that among the samples predicted as positive, a high
proportion are truly positive, with relatively few False Positives (FP). The recall rate of 95.78% shows that the model effectively
captures actual positive samples, resulting in a low number of False Negatives (FN). The F1 score of 96.10%, which integrates
precision and recall, further validates the model’s balance and robustness in classifying both positive and negative samples.
Overall, these metrics indicate that the classification model possesses high reliability and generalization ability on the SEED-
VIG dataset.

4.2. Fatigue dataset detection results

This study analyzed EEG signals from the O1, O2, C3, and C4 channels. EEG signals were segmented into 5-second intervals,
with a total of 800 segments selected—400 representing the awake state and 400 representing the fatigue state. The training-to-
testing split ratio was set to 7:3. The classification results are shown in the figure below.

Figure 5. Classification results of the fatigue dataset

As shown in Figure 5, the model demonstrates excellent performance on the fatigue dataset. The accuracy reaches 95.12%,
indicating strong overall classification performance. The precision is 96.28%, suggesting that the model has a very low false
positive rate when predicting samples as fatigued. The recall is as high as 96.84%, reflecting the model’s strong ability to capture
true fatigue states with a low miss rate. The F1 score of 96.56% further confirms the balance between precision and recall.
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Overall, the model exhibits high accuracy and strong robustness in fatigue state detection tasks, making it well-suited for EEG-
based fatigue classification applications.

5. Discussion

5.1. Result comparison

To demonstrate the advantages of the method proposed in this study for driving fatigue detection, several traditional approaches
—including Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and Deep Belief Networks (DBN)—
were employed to classify the SEED-VIG dataset. The classification results are presented in Table 3.

Table 3. Comparison with other methods

Method Accuracy (%)
CNN [24] 92.18

LSTM [25] 93.87
DBN [26] 94.21

ecurrent neural network, RNN [27] 95.50
Graph neural network, GNN [28] 95.89

Improved Dense Connection Convolutional Network 97.32

As shown in Table 3, the proposed improved dense connection convolutional network significantly outperforms other
methods in terms of accuracy, achieving the highest performance of 97.32%. Traditional CNN and LSTM models yielded lower
accuracies of 92.18% and 93.87%, respectively. DBN and RNN performed slightly better, with accuracies of 94.21% and
95.50%, while GNN ranked second with an accuracy of 95.89%. This comparison demonstrates the clear advantage of the
improved dense connection convolutional network in classification tasks. The performance improvement can be attributed to the
optimized network architecture, which enables more effective feature extraction. Overall, the proposed method surpasses existing
mainstream models in accuracy, showcasing its strong potential for practical applications.

In EEG-based driving fatigue detection tasks, compared to methods such as CNN, LSTM, DBN, RNN, and GNN, the
improved dense connection convolutional network (such as the modified DenseNet) offers core advantages in its superior feature
reuse capability, parameter efficiency, and ability to mitigate gradient vanishing. These strengths make it particularly well-suited
for processing EEG data, which often features weak signal characteristics, important spatial topological relationships, and limited
data volume. The proposed method has the following advantages:

(1) Preservation and Enhancement of Subtle Features: Subtle fatigue-related features extracted in the early layers—such as
slight changes in specific frequency band energy—can be seamlessly propagated to deeper layers and fused with more complex
features extracted later. This prevents the loss of critical information that may occur in traditional CNNs.

(2) High Parameter Efficiency: Through feature reuse, the network avoids relearning redundant features at each layer,
significantly reducing the number of model parameters. This is especially important for EEG datasets, which are typically small
in scale, as it lowers the risk of overfitting and enhances the model’s generalization capability.

(3) Optimized Information Flow and Mitigation of Gradient Vanishing: The dense cross-layer connections provide abundant
short-path gradient backpropagation, significantly alleviating the gradient vanishing problem often encountered in training deep
networks. This enables the construction and training of deeper and more powerful networks, allowing for the learning of more
complex EEG fatigue representation patterns [29].

(4) Inherent Integration of Spatial Information: The convolutional operations of CNNs effectively capture the spatial
topological relationships between EEG channels—an area where GNNs excel, though GNNs are more complex in design. The
improved DenseNet architecture, with the incorporation of attention mechanisms or specialized modules, further enhances the
integration of spatial features and the temporal dynamics of EEG signals—typically the strength of LSTM/RNN. This approach
avoids the high computational cost and gradient issues associated with long sequences in LSTM/RNN models, as well as the
structural complexity and training challenges of DBNs [30].

5.2. Limitations and future directions

Although the proposed improved dense connection convolutional network demonstrates superior performance in driving fatigue
detection, several limitations remain. For example, EEG signals are susceptible to physiological noise such as eye movements
and Electromyographic (EMG) interference. This study did not quantitatively analyze the model’s robustness under strong noise
conditions, which may lead to performance degradation due to signal quality fluctuations in practical applications. Furthermore,
this study relies solely on Perclos as the fatigue label, without integrating other physiological indicators (e.g., heart rate
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variability, galvanic skin response), potentially overlooking the multifaceted nature of fatigue. To address these limitations,
future research may proceed along the following directions: First, multimodal data fusion can be explored by combining eye-
tracking, ECG, functional Near-Infrared Spectroscopy (fNIRS), and other heterogeneous data sources to develop cross-modal
fatigue detection models, thereby enhancing the comprehensiveness and reliability of fatigue assessment. Second, efforts can be
made to enhance cross-scenario generalization by collecting EEG data in real-world driving environments (e.g., long-haul
trucking, taxi driving) and applying transfer learning techniques to improve the model’s adaptability to complex and varied
scenarios.

6. Conclusion

This study proposed an EEG signal classification method for driving fatigue detection based on an improved dense connection
convolutional network and validated its effectiveness on the SEED-VIG dataset. Experimental results demonstrate that the
proposed method significantly outperforms traditional approaches such as CNN, LSTM, DBN, RNN, and GNN, achieving an
accuracy of 97.32%, precision of 96.43%, recall of 95.78%, and an F1 score of 96.10%. These results highlight the method’s
excellent classification performance and strong generalization capability.

The core contributions and innovations of this study can be summarized as follows:
(1) End-to-End Feature Extraction and Classification: The model directly uses raw EEG signals as input, avoiding the

limitations of traditional methods that rely on complex preprocessing and manual feature engineering, thereby improving the
model’s applicability and computational efficiency.

(2) Improved Dense Connection Architecture: By utilizing dense cross-layer connections and multi-scale convolutional layer
design, the model enhances feature reuse, reduces parameter redundancy, and mitigates the gradient vanishing problem in deep
networks, enabling more effective capture of subtle fatigue-related features in EEG signals.

(3) Optimization of the Attention Mechanism: The introduction of an improved ECA attention module, combining global
average pooling and global max pooling, enables dynamic weighting of multi-scale feature channels, further enhancing the
model’s sensitivity to key fatigue-related features.

(4) Robustness and Generalization: The model maintains high accuracy and stability in EEG data characterized by significant
noise interference and individual variability, outperforming traditional methods such as CNNs, which are sensitive to noise;
LSTMs, which require large amounts of data; and RNNs, which have poor noise resistance.
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