References
[1]. Zhou, Z., Wang, Y., Zhao, W., Wang, Z., & Zhao, Y. (2024). Study on thermal expansion coefficient and absorbing properties of fiber reinforced resin-based absorbing composites.Composites Part C: Open Access,14, 100449.
[2]. Lu, H., & Guo, Y. (2021). Study on equivalent circuit model of metamaterial perfect absorber.Electronic Components & Materials,40(6), 570–573, 577.
[3]. Li, K., Li, Z., Chen, H., Luo, W., & Weng, X. (2020). Study on broadband tunable radar absorbing materials based on graphene. Electronic Components & Materials, 39(6), 28–33.
[4]. Liu, X., Fan, K., Shadrivov, I. V., & Padilla, W. J. (2017). Experimental realization of a terahertz all-dielectric metasurface absorber.Optics Express, 25(1), 191–201.
[5]. Cao, M., Zhu, J., Yuan, J., Peng, Z., & Xiao, G. (2002). Simulation of multiple composite coatings based on conducting plate and investigation of microwave reflectivity.Microwave and Optical Technology Letters, 34(6), 442–445.
[6]. Dayal, G., & Ramakrishna, S. A. (2013). Design of multi-band metamaterial perfect absorbers with stacked metal–dielectric disks.Journal of Optics,15(5), 055106.
[7]. Guo, Y., Hou, X., Lv, X., Bi, K., Lei, M., & Zhou, J. (2017). Tunable artificial microwave blackbodies based on metasurfaces.Optics Express,25(21), 25879–25885.
[8]. Liu, J., Sano, Y., & Nakayama, A. (2009). A simple mathematical model for determining the equivalent permeability of fractured porous media.International Communications in Heat and Mass Transfer,36(3), 220–224.
[9]. Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F., & Smith, D. R. (2006). Metamaterial electromagnetic cloak at microwave frequencies.Science,314(5801), 977–980.
[10]. Laila, D., Sujith, R., Shameena, V. A., Nijas, C. M., Sarin, V. P., & Mohanan, P. (2013). Complementary split ring resonator‐based microstrip antenna for compact wireless applications.Microwave and Optical Technology Letters,55(4), 814–816.
[11]. Zhou, Z., Zhao, Y., Wang, Z., & Cheng, H. (2023). The design and fabrication of a broadband meta-material absorber based on a double-layer ring structure.Journal of Magnetism and Magnetic Materials,586, 171203.
[12]. Gil, I., Bonache, J., Garcia-Garcia, J., & Martin, F. (2006). Tunable metamaterial transmission lines based on varactor-loaded split-ring resonators.IEEE Transactions on Microwave Theory and Techniques,54(6), 2665–2674.
[13]. Aydin, K., & Ozbay, E. (2007). Capacitor-loaded split ring resonators as tunable metamaterial components.Journal of Applied Physics, 101(2), 024911.
[14]. Zhao, H., Gong, Y., Xing, M., Ou, Q., & Lin, H. (2015). Design and application of multi-layer impedance gradient in structural absorbing materials.Aerospace Materials & Technology,45(4), 19–22.
[15]. Zhou, Z., Liu, Y., Chen, X., Wang, Z., & Zhao, Y. (2024). Study on properties of glass-fiber-fabric-reinforced microwave-absorbing composites.Materials, 17(7), 1453.
[16]. Hasar, U. C., Barroso, J. J., Sabah, C., Ozbek, I. Y., Kaya, Y., Dal, D., & Aydin, T. (2012). Retrieval of effective electromagnetic parameters of isotropic metamaterials using reference-plane invariant expressions.Progress In Electromagnetics Research, 132, 425–441.