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Music creation through the use of artificial intelligence (Al) is an emerging and
rapidly developing field. This paper presents a comprehensive review of the current state of
Al music generation, covering the historical development of computer-assisted music
production and Al-assisted music from early analog and digital tools to modern neural
network architectures, and highlighting key developments such as MIDI, DAWs, plugins,
and early algorithmic composition systems. It also examines symbolic and audio-based
music representations, including MIDI, sheet music, waveforms, and spectrograms, and
evaluates generative models such as GANs, LSTMs, Transformers, VAEs, and diffusion
models, analyzing their various capabilities and limitations. Applications in areas such as
content creation, gaming, healthcare, and marketing also demonstrate Al’s growing global
impacts. This review also compares subjective, objective, and combined evaluation
strategies used to assess new Al music models and addresses challenges and potential
problematic areas in current studies and research. Finally, future research directions are
discussed, including improved generative techniques, interdisciplinary integration, and real-
time interactive systems, suggesting pathways for researchers to enhance -creativity,
expressiveness, and practical application in Al-assisted music production.

Artificial Intelligence, Music Generation, Music Evaluation, Generative Models,
Music Representation

The recent rapid development of new artificial intelligence (AI) technologies has enabled the
automatic generation of complex melodies, harmonies, and arrangements, greatly changing the way
music is composed. Advances in neural networks and generative models have expanded the
capabilities of Al music systems, and new hybrid approaches combining various methods of
generation are being explored, in order to produce high-quality computer-generated music.

Research on music production dates back decades, from live performance-focused methods and
early analog recordings to the increasing prevalence of computational music tools. For example, the
introduction of digital synthesizers and plugins offered music producers previously unprecedented
control and creative flexibility in their work. In the modern day, a large portion of music production
is done completely digitally.
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By building on this foundation, Al has become an important force in contemporary music
production. Modern Al systems, through the use of architectures such as Generative Adversarial
Networks (GANSs), Transformers, and diffusion models and the analyzing ofa analyzing large-scale
datasets, can generate new, complex musical pieces. Today, the use of Al allows people to
experiment with new genres in music, change compositions in real time, and explore new forms of
musical expression, establishing Al as an critical component of modern music-making.

Lately, Al music generation is changing from being experimentational to becoming a useful tool
for a variety of uses. Its current applications span a wide range of fields, including healthcare,
marketing, and gaming, and enable processes such as personalized music therapy and adaptive,
immersive, soundtracks.

Despite significant progress, several challenges remain about the creation of music through Al
Generating unique and interesting music is still very difficult, and methods of evaluation often lack
standardization, which makes it hard to consistently assess and compare new and current tools. As
the applications of Al-generated music expand, there is a growing demand for high-quality and
faster, real-time outputs. Addressing these challenges requires further analysis of current research
and future developments to advance technical capabilities and push current boundaries and
limitations.

In this paper, I aim to provide a systematic review of the latest advancements in Al music
generation. It looks at the potential and limitations of current methods and the systems used to
evaluate them. And it also presents various challenges and proposes new directions for future
exploration, to inspire further innovation and the continued development and use of Al as a core tool
in music creation and production.

The history of computer music generation spans over six decades. Early systems relied on rule-
based systems and probabilistic approaches. The introduction and rise of deep learning marked a
turning point, driving a period of rapid advancement and widespread experimentation in
computation music. Contemporary approaches now are able to create symbolic processing, and also
can extend beyond to the direct generation of high-fidelity audio, supporting tasks that range from
reproducing traditional acoustic instruments to inventing entirely novel sounds.

Recently, Al music generation programs have made significant advancements, especially in
generation output quality. In particular, the development of Generative Adversarial Networks
(GANSs), Transformers, and various diffusion models have helped to enhance variety, structural
depth, and expressiveness in generated outputs. Additionally, emerging hybrid frameworks that
merge symbolic and audio-based generation are helping to strengthen both the formal organization
and musical richness of machine-produced music. These advancements have expanded the
boundaries of algorithmic composition and created better ways to explore and directions for
innovation in both art and technology.

In the early 1900s, the recording of music was done on analog machinery, mixing boards and tape-
based recording systems. In the 1970s, the introduction of synthesizers allowed musicians to
generate sounds and design a wide range of timbres and effects through the modulation of
waveforms such as sine and triangle waves. This innovation significantly broadened the creative
technologies available to composers and producers at the time [1].
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2.2. Digital Audio Workstations (DAWSs) and plugins

In the late 1900s, as advanced digital music technology quickly expanded, Digital Audio
Workstations (DAWSs) began to be used. DAW platforms consolidated tasks such as recording,
editing, mixing, and composing into a single software system, making the overall workflow of
music creation streamlined and accessible. DAWs allow producers to compose within a single
software environment, simplifying technical processes and lowering entry barriers for music
production [2-4]. The growing adoption of DAWs also gave rise to an extensive ecosystem of
plugins, software extensions that added to or modified the core functionalities of DAWSs. As a result,
they introduced a large range of effects and tools, further expanding creative possibilities available
to producers.

2.3. Artificial intelligence

Advancements in digital technology have steadily brought Al into the field of music creation and
production. By processing large-scale music datasets, Al systems are able to identify structural
patterns, extract key features, and generate original compositions. One early integration of Al into
music was Max/MSP. One of the first practical uses of Al-driven methods in music production.,
Max/MSP was an interactive environment for audio programming that enabled musicians to design
custom instruments and sound effects through code. As these technologies evolved, new machine
learning tools were introduced, including those that could compose music from curated datasets and
automate technical processes such as mixing and mastering. Now, contemporary Al systems can go
even further, being able to both replicate established musical styles and create entirely novel musical
forms, resulting in an expansion of the creative possibilities available to composers, producers, and
artists.

2.4. Modern music production

In the present day, the majority of music production is almost entirely digital at every stage, from
composition and arrangement to mixing, mastering, and sound editing. The constantly expanding
range of plugins, ranging from resonators to advanced convolution reverbs, offers producers
virtually limitless possibilities for sound design and experimentation. The integration of Al
technologies has pushed these capabilities even further, enabling the creation of brand-new pieces
from scratch. Al-powered tools have significantly extended the range of creative resources that are
available to musicians, facilitating the development of new and unique genres, approaches, and
soundscapes.

3. Methodology
3.1. Music representation

Al music generation can be separated broadly into symbolic and audio-based approaches [5].
Symbolic generation produces abstract representations (such as MIDI files, sheet music, or piano
roles), operating on discrete data and emphasizing the modeling of musical elements such as
melody, harmony, rhythm, and structure This approach allows for interpretable and controllable
composition but is limited in timbre and expressive nuance.

On the other hand, audio music generation directly synthesizes sound signals, including
waveforms or spectrograms by working with continuous audio data. It focuses on realism, timbre,
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and expressive detail. However, hile it can produce highly realistic music, it often requires
substantial computational resources and may face challenges in maintaining long-term musical
structure.

How music data is represented is an important aspect of Al music generation systems, because it
influences the quality of generated music and how models interpret input data and produce outputs.
Different methods of representing music are able to capture various features of music, such as
structure, timbre, or rhythm. And each have their advantages and disadvantages. These following
outlines several widely adopted representation approaches and the contexts in which they are

typically applied (Table 1 & 2).

Table 1. Symbolic music generation representation

Sheet music remains the classical method of representing music, using a music staff and various symbolic
Sheet markings .for feqtures such as .pitc.h, rhythm, dynamics, and 'expression. Within th.e c.ontext of Al music
Music genera‘ugn, thlS. r.epresentagon is also valuable for producing outputs that remain 1r.1terpr.etabl§ and
consistent with traditional music theory. Models can be created to both transcribe existing pieces into sheet
music or generate entirely new composition scores.

Musical MIDI is a standardized digital system that encodes musical information (such as notes, pitch, dynamics,
Instrument  and tempo) as “performance instructions” to be rendered by hardware synthesizers or music software,
Digital making it a flexible tool for Al-driven music generation. In symbolic music generation, MIDI is the most
Interface  commonly used representation format, often serving as both input and output because of its near-universal
(MIDI) compatibility and ability to precisely handle basic levels of musical detail [4].

Table 2. Audio music generation representation

Audi  Audio waveforms capture audio directly in the time-domain, making it the most faithful but also the most data-
0 intensive representation; an example is WaveNet, a deep neural network capable of generating realistic speech

Wav and music in the form of raw audio waveforms [6]. While this format retains every detail of the original
efor generated signals and creates very detailed audio information, processing them requires significant
ms computational power and memory.

A spectrogram represents audio in the frequency domain. They illustrate how different frequency components
Spec change over time. Cpmmon variants sych as Short-Time Four.ier T.re.msform (STFT), Mel, agd Constant-Q
trogr spectrograms are widely used for music tasks. Because of. their ab111.ty to re.present ‘t?oth aud.10‘s f.requency
am structure and temporal characteristics, spectrograms are important in music analysis, classification, and
generation. For example, the model Tacotron 2 takes text-based promtps and outputs raw spectrograms, which
are then converted into waveforms [7].

These two broad categories (audio and symbolic) of music generation can be further divided into
various types of generative models, each suited to specific tasks with unique strengths, data types,
and musical goals. Following a survey conducted by Chen et al., 2024, some major types of these
models are outlined below (Table 3).

56



Proceedings of CONF-CIAP 2026 Symposium: Applied Mathematics and Statistics
DOI: 10.54254/2753-8818/2026.CH30045

Table 3. Classifications of music generation models

Diffusion models create realistic music by gradually refining noisy signals into clear audios. Neural networks
are trained by gradually adding, or “diffusing”, random noise to data, and then reversing that process to

Diffusi ) . . L. i o
! IFSIO generate quality audio. Recent developments include Mosai, a cascading latent diffusion model capable of
Models generating high-quality stereo music from text prompts [8]. Noise2Music is another series of diffusion
models able to generate music clips from text through the use of both a generator and cascader diffusion
model [9].
Generati

ve GANSs create realistic and high-quality music by training a generator and discriminator in opposition, making
Adversa them well-suited for producing complex and varied audio. GAN models have all made notable achievements

rial in generating individual and layered, multi-track compositions. These models include WaveGAN, an
Network application of GANs to unsupervised raw audio creation [10]; and MuseGAN, a combination of three models
s for multi-track music generation capable of generating music from scratch, without human input [11].
(GANs)
Long
S"li?’rr; LSTMs are highly effective at processing sequential data and capturing long-term dependencies capable of
Memory producing musically coherent and express.ive pit.‘,ces. For example, LSTM models BachBot [1%] and
Network DeepBach [13] were used to create polyphonic music modeled after the chorales of Johann Sebastian Bach.
X However, these models have significant drawbacks in that they require the use of large amounts of training
(LSTMs data and high computational demands, which can restrict their use in settings where resources are limited.
)

Transformers use mechanisms in self-attention in order to process sequences more efficiently, making them
strong at modeling long-term relationships and complex patterns. MusicLM [14] combined Transformer-
based models with audio synthesis to create music generation from a text input through hierarchical
Transfor  sequence-to-sequence modeling. However, as with LSTMs, Transformers are limited by their demand for
mers substantial computational resources. The Music Transformer generated structured segments created by
capturing recurring musical motifs over time to create human-like compositions with a reduced, linear
sequence-length memory requirement to utilize less memory resources compared to other similar models
[15].

VAEs learn compressed latent spaces that can be sampled to generate new music. For example, MIDI-VAE

Va;;aluo enab%es style transfer betwe.en different p.ieces by ngodifying features such as pitch, instrumentatipn, and

Autoenc dynam%cs (through note duration and velocity), res‘l{ltlng in new, adapted melodlc?g or br.and-new‘ mixtures of
oders ’ entire songs [16]. On the other hand, the Conditional VAE allows more conlelonal information to be
(VAE) introduced. Compared to GANs or Transformers, however, VAE-generated music may be less coherent or

sound less musical.

Beyond the main approaches, researchers have also explored techniques such as Convolutional Neural
Networks (CNNs), a deep learning model that uses convolutional layers to automatically detect and learn
Other hierarchical features from structured data; types of Recurrent Neural Networks (RNNs), a model designed for
Models sequential data where each step’s output depends on both the current input and information carried from
previous steps; and methods of combining multiple different models to leverage various strengths and
improve overall performance.

4. Evaluation methods

As Al-driven music generation advances across symbolic and audio domains, evaluating musical
quality has become a key issue and challenge. Current approaches primarily fall into three
categories: subjective evaluation, which relies on human listeners but is costly and inconsistent;
objective evaluation, which uses computational metrics but often fails to capture human musical
perception; and combined evaluation, which integrates a mix of both processes [5].
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Subjective evaluation is generally based on the input and feedback of human listeners. Although
subjective music evaluation is less reproducible (due to varying perceptions of music) and cost-
friendly (caused by the need for human participants), it is still a key part of Al-generated music
evaluation, as music appreciation is inherently subjective. Within current subjective evaluation
approaches, the two primary methods are listener-based audio tests and visual inspection of music
output.

Visual analysis of music scores often involves the involvement of an expert in music to analyse
the output of symbolic music representations, including scores, chord progressions, and piano roll.
For instance, one study displayed generated notes through “Rainbowgrams”, visually reconstructed
as colorful spectrograms [17]. On the other hand, the music listening test is the most frequently used
type of subjective evaluation. It is further split into two methods: a musical Turing Test and
subjective query metrics. In subjective query metrics, participants are asked to rank aspects of
computer-generated music, such as creativity, melody, and rhythm, on a numerical scale. In a
musical Turing Test, Al-generated audio is compared to human-created music, with participants
being asked to differentiate between the two.

Compared to the human-based subjective evaluation, objective evaluation involves the use of
computational methods to assess music, producing reproducible, quantifiable indicators of quality.
For example, some researchers proposed a set of simple musical metrics to evaluate and compare the
output of music-generating Al models, which included the computational extraction of features
including pitch, note count, average inter-onset interval (IOI), and note length [18].

When evaluating Al-generated music, we can use subjective and objective evaluation methods
together to create combined evaluations. This term refers to methods that use a combination of both
subjective user study and more objective, computational metrics to create a final evaluation result.
For example, Huang et al. Evaluated their music mashup model, using both objective metrics and
subjective listening tests [19]. By combining the two perspectives, this type of combined testing can
build on the strengths of both approaches. And it helps negate each of their weaknesses, and
producing a fuller and more well-rounded picture of specific models’ performances.

Evaluating Al-generated music remains a complex challenge, as current methods struggle with
factors including standardization, consistency, and interpretability. Combined methods attempt to
balance these strengths; however, aligning results across both methods remains difficult. Further
complications arise in assessing creativity—novelty, originality, and value—since these qualities
may be defined differently across different genres and by various audiences. Establishing unified,
accurate, and efficient standards and developing metrics that combine subjective and objective
evaluations are critical next steps for advancing fair and comprehensive assessment in this field [5].
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5. Applications

The applications of Al music generation spans dozens of fields, showing broad cultural and
commercial value. A few application areas and their brief descriptions are listed in Table 4.

Table 4. Applications for Al music generation

Al tools have evolved from producing simple stylistic imitations to powering large-scale creative
Content projects. Modern systems like MuseNet and Magenta create complex, multi-genre compositions used in
Creation  film, advertising, and multimedia production, which can improve both efficiency and creative flexibility
in content creation and filmmaking.

Gaming and . . . . .
Interaftive Al can be used to create dynamic, adaptive, and flexible soundtracks in videogames that can change in
Entertainme real time based on the actions of players and current in-game environments, which can help to improve
ot immersion while also reducing soundtrack creation time and costs for game developers.

There has been shown to be connections between music therapy, stress relief, and rehabilitation, as well
Healthcare as broader mental health applications. The use of Al to create music for music therapy can create
personalized, adaptive music tailored to specific individuals’ needs.

Al-generated music can strengthen brand identity by creating distinctive audio signatures and adaptive
Marketing  campaign soundtracks. Beyond background music, interactive ad experiences allow music to respond to
consumer engagement, increasing emotional impact and brand recognition.

Across healthcare, education, media, entertainment, and the arts, Al music generation has moved
from experimental novelty to widely adopted tool. By improving efficiency, enabling
personalization, and inspiring further artistic innovation, it continues to shape industries and musical
traditions throughout the world.

6. Challenges and future research

Despite notable advances in Al-driven music generation, especially recently, many challenges and
limitations still remain, offering grounds for future research.

6.1. Challenges

Generating truly novel and varied music continues to be a major hurdle. Early systems, like David
Cope’s Experiments in Musical Intelligence, were able to imitate existing styles but lacked
innovative and stylistically creative output. Later deep learning approaches, including GANs and
RNNSs, improved variety, but still often produce compositions that are overly similar in style. This is
caused partially due to a phenomenon known as “model collapse”, in which the training of models
on their own output eventually leads to the degeneration and lack of distinctiveness in the final
outputs [20].

The assessment of Al-generated music is made more difficult by inconsistencies in current
evaluation methods. Traditional approaches rely on human judgment, which are often considered
more reliable, but it can be subjective and lack reliability and reproducibility. On the other way, new
and quantitative metrics based on statistical analysis have emerged; however, they should not be
relied on by themselves and integrating them effectively with subjective human assessment is still a
challenge [17].

59



Proceedings of CONF-CIAP 2026 Symposium: Applied Mathematics and Statistics
DOI: 10.54254/2753-8818/2026.CH30045

In order to overcome existing hurdles in generative music technology, future research can prioritize
several key directions [2]. First, more advanced types of music representations and generation
techniques need to be developed and advanced. Second, interdisciplinary approaches, which
involves the combining of concepts in fields such as music theory, cognitive science, and deep
learning can also be leveraged, are important for advancing Al music generation, and should be
explored. The development of more interdisciplinary models can improve models’ ability to handle
more intricate musical structures and produce outputs aligning with the aesthetic and emotional
qualities traditionally desired by human listeners. Finally, more work could be done on real-time
music generation and modification. It could help enhance audience engagement and participation,
offering increased flexibility and creative freedom for both listeners and musicians, especially with
regards to interactive music or live performances.

If steps are contining to be taken toward the development and implementation of these areas, Al
music generation is set to overcome many current limitations, achieving greater structural
coherence, expressive depth, and diversity. And this progress will open numerous new doors for
music creation and production, driving the rapid intelligent evolution of the use of Al in music and
the fields of artificial intelligence and computer science.

This paper provides a comprehensive review of the development of Al music generation and its
history, representation methods, generative models, and evaluation strategies. It follows the history
of computer music from its initial origins and early applications to modern music production and the
use and development of artificial intelligence with regards to it. By analyzing current models from
both symbolic and audio-based approaches, as well as offering insights into sub-classifications of
the two, such as diffusion models and GANSs, this paper offers a structured overview of the current
technological landscapes and the various types of Al models used to create music.

However, despite progress, significant challenges still remain. Current subjective, objective, and
combined methods of evaluating music output by Al programs are still flawed, and quality
standardized benchmarks have not yet been established. Dataset limitations, both in size and
diversity, also constrain the ability of current models. Future research should therefore focus on
several key directions. For one, developing more diverse and advanced datasets is essential.
Additionally, advances in music representation may allow models to more faithfully reproduce the
complexity of human composition, while new generative methods can help preserve originality and
avoid stylistic repetition. Real-time generation and adaptive interaction could also be improved,
which would enable Al systems to function as creative tools in performance and production.

In conclusion, Al music generation is a rapidly growing field with significant implications in both
technology and the arts. By consolidating previously existing research and identifying current
challenges that could be addressed, this paper provides a framework for future inquiry and
development. As methods become more sophisticated and applications expand, Al may transform
the way music is made by redefining the role of technology in human creativity and turning it from a
purely human practice into a collaborative endeavor between humans and machines.
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